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Abstract—We study code coverage in several popular Python
projects: flask, matplotlib, pandas, scikit-learn, and scrapy. Cover-
age data on these projects is gathered and hosted on the Codecov
website, from where this data can be mined. Using this data, and
a syntactic parse of the code, we examine the effect of control
flow structure, statement type (e.g., if, for) and code age on
test coverage. We find that coverage depends on control flow
structure, with more deeply nested statements being significantly
less likely to be covered. This is a clear effect, which holds up
in every project, even when controlling for the age of the line
(as determined by git blame). We find that the age of a line
per se has a small (but statistically significant) positive effect
on coverage. Finally, we find that the kind of statement (try, if,
except, raise, etc) has varying effects on coverage, with exception-
handling statements being covered much less often. These results
suggest that developers in Python projects have difficulty writing
test sets that cover deeply-nested and error-handling statements,
and might need assistance covering such code.

Index Terms—Test coverage, Mining, Python, Code age

I. INTRODUCTION

When have we tested enough? Since testing can never
show the absence of defects, we’ll never know for sure,
but various approaches have been proposed. Test coverage
is one: it measures how much of the system is exercised
during testing. For example, one might measure the fraction
of executable statements actually executed (covered) during
testing. High coverage levels indicate more careful testing,
and are sometimes even mandated by Government regulation1.
In addition, popular open-source projects (which welcome
contributions from anyone) need to ensure that contributed
code is of high quality; OSS projects thus need rigorous and
automated integration testing practices [1].

However, ensuring high levels of coverage is difficult,
especially in settings with complex, nested condition flow.
Consider the fairly simple code fragment in Figure 1, where
C refers to conditions and S to executable statements.

i f C1 : # Depth 1
S1 # Depth 2

e l i f C2 : # Depth 2
S2 # Depth 3

e l i f C3 : # Depth 3
S3 # Depth 4

Fig. 1. Example of control flow nesting depth.

Covering the deeply nested statement S3 requires devel-
opers to find inputs that satisfy a complex condition like
C3 && !C2 && !C1. Deeply nested statements impute complex

1e.g., See the U.S Federal Aviation Administration document DO-178C.

path conditions, and thus would be even harder to cover.
In addition, it is also known that exception-handling code,
although quite common [2], is difficult to test, and sometimes
defect prone [3]. However, if such code is largely left untested,
software developers run the risk of shipping untested, and
therefore potentially defective code.

How are these issues dealt with in practice? Is such deeply
nested or exception-handling code covered by tests? We thus
have two main research questions:
RQ1 Are more deeply nested statements less often tested?
RQ2 Does the type of statement (condition, loop, exception-
handling) affect the likelihood of being tested?
Fortunately, data to answer such questions has become avail-
able. Many OSS projects use continuous integration services
like Travis; some continuously measure test coverage and
make archived coverage results available for future study. This
data has been used recently [4] to study the evolution of
coverage over time in several projects. Our goal here is a fine-
grained understanding of how coverage relates to the difficulty
of executing statements. We gather coverage data for 5 widely-
used Python projects, and measure how coverage relates to
control-flow nesting, and to statement types. We report the
following findings.

1) Each increase in the level of control flow nesting reduces
the probability of being tested by about 19%.

2) The probability of coverage depends on statement type.
In particular, exception handling is 82% less likely to
be covered compared to normal assignment statements.

Our findings suggest that developers need help (perhaps
from automated testing tools) to specially focus on testing
deeply nested code, and also error handling code. In particular,
the findings of Toy [3] about the significant role of exception
handling code in field failures suggest that the relatively much
lower rate of coverage of exception handling code in these
OSS Python projects requires more careful attention.

II. RELATED WORK

Test coverage is a well-known method that is often claimed
as a good indirect measure of the defect-detection ability
of a test set. Various coverage criteria, including statement,
edge, path, and data-flow criteria [5] have been proposed.
Prior empirical work has evaluated this claim, with mixed
results [6], [7]. Kocchar et al [8] report a surprising lack of
effect of code coverage on post-release quality; however their
coverage data is aggregated at the project level, and does not



record exactly which code remained untested. Our goal in this
paper is not to evaluate the effectiveness of coverage, but to
determine which statements are actually being executed during
testing, and to seek indicators suggestive of which statements
are less likely to be tested. By doing this, we hope to help
developers and tool builders direct their efforts towards the
types of code that tend to remain untested.

Several recent empirical studies made use of Github and
examined open-source software(OSS) projects. Trautsch and
Grabowski studied 10 open source Python projects (including
scikit-learn) to investigate whether unit testing is widely used.
Their findings suggested that developers believe that they
are developing more unit tests than they actually do [9].
Another study of Hilton et al. [4] leveraged Coveralls2 to
gather coverage data of OSS projects. By doing so, they were
able to include projects written in any language supported by
Coveralls. Their goal was to study the impact of software
evolution on coverage. While we analyze the effect of code
age on coverage, our primary goal is to study the effects of
control-flow nesting and statement type on coverage.

III. METHODOLOGY

TABLE I
SUMMARY STATISTICS FOR THE SIZE OF THE PROJECTS IN PYTHON FILES,
TRACKED NON-TEST PYTHON FILES, NUMBER OF TRACKED STATEMENTS,

AND THE CODE COVERAGE FOR OUR SELECTED VERSIONS.

Project Files Tracked
Files

Tracked
Stmts. Coverage Date

flask 68 17 1965 90.59% 2018.07.24
matplotlib 845 171 53050 75.43% 2018.08.22
pandas 662 169 50268 91.98% 2018.08.22
scikit-learn 714 264 36523 86.68% 2018.08.22
scrapy 276 167 9346 87.18% 2018.08.17

A. Coverage Data

We choose 5 Python projects for study: flask, matplotlib,
pandas, scikit-learn, and scrapy. All are under active devel-
opment, include detailed guidelines for contributing, and have
more than 5000 stars on Github. Table I displays information
on the size and version of each project, ranging from smaller
projects like flask to larger ones like matplotlib.

We gather the coverage reports using the API provided by
Codecov3, a popular service in the open-source community.
We picked a recent version for each project (see Table I), and
used the API to obtain all tracked coverage information. We
measure coverage out of statements, the basic unit of program-
ming syntax (see III-B for more detail). The files chosen to be
tracked for coverage depend on how the developers configure
their test set, so not all files contain coverage information. A
detailed explanation of what files and statements are excluded
from tracking and why is provided in Section III-C. We see in
Table I that among these tracked statements, coverage is fairly
high, ranging from 76% in matplotlib at the lowest to 91-92%
for flask and pandas at the highest.

2https://coveralls.io/
3https://codecov.io

For each project, we use the git ls-tree command4 to
get the list of files tracked by git, and request coverage data
for each file from Codecov using the requests5 library. Code-
cov returns a JSON file with statement and branch coverage
data for each tested line as applicable. Statement coverage
information is binary, covered or not. For each branching
statement, (e.g., if ), Codecov uses static analysis to determine
the number of statements potentially reachable from it (denom-
inator), and dynamic analysis to determine the number reached
during execution of the tests (numerator). Branch coverage is
reported as a pair, numerator and denominator.

For each line, we also gathered the name of the author, the
commit in which it was last modified, and the timestamp of
that commit (found by git blame). We then calculate the age
of the line in seconds by computing the time delta between the
time when the coverage data is gathered and the time when
the line was last modified.

B. AST Data

We measure the degree of control flow nesting from the
Python abstract syntax tree (AST). For each Python file in
the 5 projects, we use the ast module from Python 3.76 to
generate an AST for the file. Using a visitor pattern on the
AST, we visit each statement in the tree, where statements are
the node types defined in the Python 3 ast module. We also
include one additional type (for 26 total) not explicitly listed
in this module, viz., ExceptionHandler, to more accurately
capture AST information for except clauses.

From this tree, we calculate the depth in the AST for each
statement node by the number of other statement nodes above
it in the tree, with a statement at the top level having a depth
of 1. We refer back to Figure 1 to demonstrate this idea
for an if and elif statement. The first if is at depth 1, but
each elif increases the depth by one, and all statements below
the conditions are nested one level deeper in the tree. This
matches with the intuition of how difficult a line is to cover,
as each parent elif above a statement adds another condition
to satisfy to reach it. If a single line contains 2 statements
(such as a function definition and return on the same line
e.g. def double(x): return 2 * x), we record 2 entries for that
line. No line contains more than 2 statements and the vast
majority contain 1. Additionally, we also record the previously
discussed AST type of the statement node and indentation
information for each node.

C. Data Cleaning

Recall from Table I that coverage is tracked only in a frac-
tion of the files of the project. Thus, we manually compared
these files against the testing configuration files in each project.
In most cases, untracked files were explicitly excluded by the
developers in testing configuration files. The untracked files
mostly related to testing, documentation, and examples/walk-
throughs, which are arguably reasonable to exclude. We did

4https://git-scm.com/docs/git-ls-tree
5https://github.com/requests/requests
6https://docs.python.org/3/library/ast.html



find 20 files (3 in flask and 17 in pandas) whose exclusion
we were unable to explain after manual inspection; this set
was small enough to not be of serious concern given the
significance of our primary results (see below).

Additionally, we noticed that the developers of some
projects included test files in their coverage tracking while
other projects did not. We believe that including the test files
themselves in the coverage results would manually inflate the
coverage, and thus exclude them from our models. We call files
test files if they appear in testing directories - specifically, if
they have the pattern tests/ or testing/ in their file path. We
manually examined the files in each category to ensure that
the directories were clustered correctly.

Next, we looked for inconsistencies between our AST data
and tracked lines within files that had coverage data. After
excluding ”doc string” lines (which are essentially comments;
ignored by coverage.py but counted by the ast module), a
few error cases remained. 1236 lines of the coverage infor-
mation cannot be matched with the AST data, and 1460 lines
of the AST files cannot be matched with the coverage data.
These arise primarily from an known error in the Python AST
that does not correctly label the line information of multiline
strings7, but also from a difference in how the AST and
coverage.py label the start of functions with annotations.
There are a few cases where CodeCov reported coverage data
on lines that are not statements, or had files with missing
coverage information 8. However, as these issues only affect
about 1.3% of the data from tracked files, we again argue their
exclusion unlikely to significantly impact our results. After
excluding the test files and these mismatched lines, we obtain
coverage data on around 151K Python statements.

As mentioned previously, CodeCov also provides informa-
tion on branch coverage for statements with multiple paths (if,
for, etc). These branch coverage lines accounted for slightly
more than 11K statements. However, pandas and scikit-learn
did not enable branch tracking in their tests, making this
information incomplete in the Codecov data9. For instance, if
statements had associated branch coverage information only
36.6% of the time in non test files. Fortunately, branch cover-
age is readily converted to statement coverage: the associated
numerator is non-zero exactly when the branching statement
is covered, since one of its ”followers” is hit. Therefore, we
analyzed the statement coverage data both with and without
this converted branch coverage information. These results are
very similar, so we present the analysis including the converted
branching data for completeness.

D. Regression Modeling

We model these results using standard logistic regression,
with the response being whether or not the line was covered.
We use the AST depth as the independent variable, and use

7https://bugs.python.org/issue16806
8See https://codecov.io/gh/scikit-learn/scikit-learn/src/

a8cd4f4c80357bf124e9c30f8488a406d06db21c/setup.py for an example.
9Even in the projects with the branch flag enabled, some conditionals still

only had statement coverage information.

the AST node type, and the age of the line as covariates, with
the project id as a fixed effect, and line-number in the file as
a control. The distributions of line number and line age were
highly long tailed, and were log transformed to improve model
fit [10]. We remove outliers with high standardized residuals
(>3), check model diagnostic plots, and limit the effects of
multi-colinearity by ensuring VIF scores are less than 5 [10].
We report the McFadden pseudo R2 to estimate how much of
the variance in coverage is explained by our model [11].

IV. RESULTS

flask matplotlib pandas scikit-learn scrapy
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Fig. 2. Boxplots of control-flow nesting (AST depth) for all projects, broken
by covered and uncovered statements. Depth is log-scaled. Differences are
statistically significant (p <.001) from Wilcox tests after Benjamini-Hochberg
family-wise adjustment for multiple hypothesis testing

First, consider RQ1: are more deeply nested statements less
likely to be tested? Figure 2 shows the distributions of AST
nesting depths, separated by project, plotted against whether
or not the line is covered. Despite the differences between
projects, it is clear that untested statements are usually nested
more deeply in control flow than the tested statements.

Our logistic regression in Table II quantifies this relation-
ship. Note, that with logistic regression, the coefficient of a
predictor is interpreted as a log-odds ratio. So, the depth of the
AST has odds ratio exp(−0.21) = 0.81. For each additional
level of control-flow nesting a statement about 19% less likely
to be tested10. Considering the ANOVA values, we see this
coefficient is both statistically significant and explains about
3.3% of the variance in coverage in our data.

Next, we consider RQ2: how likely different statement
types are to be covered. In our regression model, we use
the assign (ordinary assignment statements) as the baseline
for comparison against the other types. The coefficients show
assign statements are more likely to be covered than many
other types11. However, function and class definitions (which

10Thus 35% (1− (0.81)2) less at 2 levels deep, and 47% at 3 levels deep,
57% at 4 and so on.

11Of the 26 statement types defined in the grammar, only 20 appear in the
tracked code.



are covered when invoked) are almost 11 and 7 times as
likely to be covered as assignments; Imports, which can be
conditionally invoked (but typically not), are thrice as likely.
We also see that ifs are only about 33% more likely tested
than assignment statements.

Exception raising (raise) and handling (ExceptHandler) are
the least likely of all statements to be tested, both roughly
around 81% less likely to be tested than assign statements.
This is notable, in light of widely-cited results that suggest
that defects often occur in error-handling code [3].

The rest of the statements are all mostly somewhat less
likely to be tested than Assignment (but statistically signif-
icantly so). These include Continue (52% less) break (44%
less), return (37% less), and Expr statements (mostly function
calls), about 43% less. Try, With and Delete are all about 33%
less likely. For loops are about 22% less likely to be covered,
and while loops are not statistically significantly different from
assignments. In future work, we hope to examine whether
these differences cause the defects in all these relatively less
tested types of statements tend to persist, undetected.

We note that line age (as recorded by git blame) is
statistically significant, but with a small effect: the likelihood
of coverage increases by just 13.3% when the age is doubled.
This is consistent with the findings of Hilton et al [4] that
coverage increases only very slightly, if at all, over time.

Finally our controls: we see that the line number (position
in the file, while statistically significant, explains far less of the
variance in coverage (both < 1%). The amount of coverage per
project varies; with the baseline flask and the pandas projects
having proportionally more coverage than the other projects.
All together, the project explains about 5.3% of the variance.

V. THREATS

The main external validity threat arises from the represen-
tativeness and number of the projects chosen. Our projects
are reasonably diverse, including web services (flask), web
scraping clients (scrapy), data analysis (pandas), machine
learning (scikit-learn) and plotting (matplotlib). All are in
wide practical use, quite mature, and reasonably well tested.
In addition, from the consistent appearance of the box plots,
and the use of projects as a fixed effect in the regression, we
can conclude that the effects we observe do hold, with strong
statistical significance in the data overall. Finally, although we
model only 150K statements, the effects are strong enough
to be observed with statistical significance in our data, with
vanishingly low p-values (viz., low coefficient variances) that
they can be expected to generalize.

The internal validity threats arise mainly from missing
data and mis-measurement of coverage. We mitigate this
by carefully analyzing and manually checking the data. As
explained in Section III-C, there is only a small amount of
missing data. Given the statistical significance of the main
effects we report (on nesting depth and error handling) we
believe that these findings are robust nevertheless. Regarding
measurement of coverage, the tool used for measurement,
coverage.py is quite mature and stable; furthermore, the data

TABLE II
LOGISTIC REGRESSION MODEL FOR STATEMENT COVERAGE without test

files. THE BASELINE AST NODE TYPE IS ASSIGNMENT, AND THE BASELINE
PROJECT IS FLASK. THE MCFADDEN PSEUDO R-SQUARED IS 0.147.

Dependent variable:
factor(numerator >0)

ast depth −0.210∗∗∗ (0.005)
factor(node type)Assert −0.121 (0.170)
factor(node type)AugAssign 0.063 (0.068)
factor(node type)Break −0.574∗∗∗ (0.159)
factor(node type)ClassDef 1.931∗∗∗ (0.165)
factor(node type)Continue −0.737∗∗∗ (0.150)
factor(node type)Delete −0.402∗∗ (0.197)
factor(node type)ExceptHandler −1.680∗∗∗ (0.055)
factor(node type)Expr −0.570∗∗∗ (0.023)
factor(node type)For −0.243∗∗∗ (0.054)
factor(node type)FunctionDef 2.417∗∗∗ (0.075)
factor(node type)If 0.286∗∗∗ (0.024)
factor(node type)Import 1.157∗∗∗ (0.099)
factor(node type)ImportFrom 1.069∗∗∗ (0.072)
factor(node type)Pass −1.364∗∗∗ (0.084)
factor(node type)Raise −1.640∗∗∗ (0.036)
factor(node type)Return −0.457∗∗∗ (0.025)
factor(node type)Try −0.414∗∗∗ (0.067)
factor(node type)While −0.288 (0.206)
factor(node type)With −0.414∗∗∗ (0.126)
factor(project)matplotlib −1.377∗∗∗ (0.082)
factor(project)pandas 0.342∗∗∗ (0.084)
factor(project)scikit-learn −0.382∗∗∗ (0.083)
factor(project)scrapy −0.409∗∗∗ (0.088)
log(line number) 0.119∗∗∗ (0.007)
log(line age) 0.125∗∗∗ (0.005)
Constant 0.150 (0.134)
Observations 151,048
Log Likelihood −55,240.990
Akaike Inf. Crit. 110,536.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Df Deviance Resid. Df Resid. Dev

NULL 151047 129587.09
ast depth 1 4278.24 151046 125308.84
factor(node type) 19 7308.36 151027 118000.49
factor(project) 4 6656.98 151023 111343.51
log(line number) 1 343.64 151022 110999.86
log(line age) 1 517.89 151021 110481.97

is collected and archived by Codecov, which is a stable and
widely used site, so we believe these risks are minimal.

VI. CONCLUSION

We analyze test coverage data on several widely-used,
mature Python projects. We report two main findings: first,
control-flow nesting has a strong, cumulative effect on
coverage—more deeply nested code is significantly less likely
to be tested. We also find that error-handling code is far
less likely to be tested. Given widely-cited prior literature [3]
suggesting that defects tend to occur quite often in this code,
this is quite a troubling finding. In future work, we hope
to examine the relationship of coverage, statement type, and
control flow nesting to the actual detection of defective code
in these projects: even with high-levels of coverage, if defect-
prone code is not being tested, it might happen that coverage
and post-release quality are not strongly related [8]! This
material is based upon work supported by the National Science
Foundation under Grant No. 1414172.
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