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ABSTRACT

Programs operate on dual channels: not only are they meant to
be run via a compiler and interpreter; they are also meant to be
read and understood by humans. However, when people try and
understand the meaning of a program, it’s unlikely that they are
doing so by imitating a compiler or interpreter, viz., mentally simu-
lating operational semantics. More likely, they are probabilistically
guessing the meaning, using some sort of mental model reflecting
how they expect meanings to be typically implemented as pro-
grams. For this to work quickly and efficiently, program authors
must be deliberately restricting their choices on how meanings are
typically implemented - so that given a program, code readers can
quickly guess at its meaning. In other words, the conditional distri-
bution of implementation given meaning must be rather skewed.
To test this theory, we run an experiment applying several seman-
tics preserving transformations (operator swapping and parenthesis
addition/removal) to Java expressions to see if developers prefer
a more limited set of forms for conveying the same meaning. We
find that these transformations generally produce “unnatural” pro-
grams, supporting the theory of a skewed conditional distribution
of implementation given meaning.
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1 INTRODUCTION AND BACKGROUND

The flexibility of programming languages give developers a po-
tentially limitless pool of resources and methods in order to solve
problems across numerous application domains. However, despite
this flexibility, research has uncovered that in practice, the language
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of source code tends to repetition, greater repetition in fact than or-
dinary natural human language. This observation of the repetition
in human written software, which Hindle et al [7] call naturalness,
has provided great gains in applications, since language modeling
techniques historically developed for Natural Language Processing
(NLP) often work even better in the source code domain. They have
been used to improve code completion [6, 11], complete APIs [8],
fix source code [9], recover variable names [10, 12], and many more
applications.

However, while these models often port successfully to the code
context, this by no means indicates that their naive adoption is the
best or even a good way of applying them to code. As Allamanis
et al. point out in their survey of the field, one of the greatest chal-
lenges faced in this area is determining what adaptions to these
models are necessary to best improve code[1]. In particular, one
way in which source code has additional complexity over natural
language is the two purposes it serves. Traditionally, source code
is thought as being interpreted and run by the machine, but as
code must be developed and maintained by teams, the code also
serves as a form of communication between humans. This notion,
which Allamanis et al. describe as the dual channel model®, poses
an interesting issue in relating code’s meaning and its implementa-
tion. In the machine channel, two programs that are semantically
equivalent can be run identically, swapping one version out for
another. Humans can determine meaning by executing the program
as a computer might, but we can also conceive of the human chan-
nel of communication as based on a probabilistic relation between
meaning and implementation.

Why might humans approach code in this probabilistic manner?
Source code is known to be more repetitive than natural language,
and some preliminary work suggests that at least some of this repe-
tition comes from human choices [3]. We theorize that humans find
reading and writing code inherently difficult, and thus use repeat-
ing, familiar patterns to help make code easier to read. Specifically,
this would imply that given a particular computation C, program-
mers will favor one implementation over others. Stated more formally,
ifI1, I, ..., I, are different, equivalent implementations of the same
underlying computation C, then

Fj:pIIC) > p(LICWi=1,..,n,i #j (1)

If this equation is true, the distribution of implementation given
meaning is highly skewed, and it would be much easier for experi-
enced developers to draw on their experience and reuse existing
solutions. For example, this logic of reusing existing solutions is
often described as basis of design patterns commonly employed in

' Though similar notions about code’s dual nature have existed in research for a long
time[2].
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software. Thus, we wish to try and describe this relationship in a
quantifiable manner.

To capture this relationship between implementation and mean-
ing, we describe an experiment to take human written Java pro-
grams and use semantics preserving transformations to change code
expressions into meaning equivalent, but differently implemented
forms. If, as the theory expects, the distribution of programs given
meaning is very skewed, then we would expect language models
trained on a large corpus of Java to strongly prefer the original
developer written source code.

Running this experiment on a small set of expression-level trans-
formations - swapping numerical operators for +, * and adding and
removing parentheses, we have found that this theory generally
holds - but that there are some exceptions that offer the opportunity
to reformat code to be more predictable.

2 METHODOLOGY
2.1 Data and Language Modeling

In this experiment, we use 12 Java projects as the training data.
These projects were selected by choosing popular starred projects
on GitHub and then manually selecting projects from diverse do-
mains. In addition to the GitHub projects, we also include part of
the Eclipse core source code. For our case studies, we choose 3
projects for testing - Biojava, the Apache Commons Math Library,
and the Spring Framework from Pivotal. Since our transformations
focus heavily on expressions and especially numerical expressions,
we biased our selection to find projects with many examples of
such mathematical expressions for our test set.

We use 4 variants of language model to capture the probability of
a sequence of code tokens. For our language models, we use a basic
6-gram model with Jelinek-Mercer smoothing that we denote as the
"global’ model. To measure the local patterns in code, we also use an
ngram-cache model, as originally described by Tu et al. [11]. Then,
to consider the effects of the transformations on underlying source
code patterns, rather than the effects of specific variable name
choices, we consider an alternate training and testing corpus where
we use the Pygments® syntax highlighter to replace all identifiers
and types with generic token types, and literals with a simplified
type3. All our models are implemented in the SLP-Core framework,
by Hellendoorn et al. [6]%. We measure the predictability of our
expressions through the standard measure of entropy, comparing
the average entropy of tokens that appear only in both the original
and the transformed version of the expression. This average uses only
the tokens involved in the changed expression - not the whole line.

We record for modeling purposes the starting line number of
the transformation, average depth of the transformed nodes from
the root of the Abstract Syntax Tree (AST), the number of tokens
in the line, and the number of transformations performed in the
line. The type or operator of the transformed expression’s parent
node is also recorded, along with a summary of operators used in
the expression (the most and least common - see 2.2).

Zhttp://pygments.org/
3For example, we keep 1,2,3 and replace numbers with labels like <int> and <float>.
“https://github.com/SLP-team/SLP-Core
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2.2 Semantic Transformations

We present three kinds of semantically equivalent transformations
in this paper: 1) swapping of the operands in mathematical infix
expressions, 2) adding parentheses, and 3) removing parentheses.
While training the models, each Java source file from the training
projects is parsed using the AST Parser from the Eclipse Java devel-
opment tools (JDT) and the visitor pattern is used to count the type
of each node. The operator type is counted for nodes that are infix,
prefix, and postfix expressions. These counts are used to identify
the most and least commonly used node types or operators that
appear within a transformed expression. After training the Java
language models, we iterate over all Java files in the test projects,
excluding unit test files by ignoring filepaths that contain the string
"test".

For each file from the test projects, the AST is used to perform
the possible transformations. We transform only one line at a time,
resetting the AST to its original, untransformed state before the
next transformation is made. The visitor pattern is used to identify
infix expression nodes for possible transformations.

For the swap transformation, only infix expressions with the plus
(+) and times (*) operators involving operands of double, float, int
and long data types are visited for possible transformations. Infix
expressions with more than two operands are only transformed if
the data type of the operands are int or long to avoid accuracy errors
due to floating point precision limitations. Infix expressions with 2
operands are simply swapped. The number of random permutations
considered for infix expressions with more than 2 operands is equal
to the number of operands in the infix expression.

The parentheses adding transformation relies on the tree struc-
ture of the AST to add parentheses while preserving the correctness
in the order of operations. For each transformation we randomly
select a subset of infix subexpressions to add parentheses. We cap
the maximum amount of possible transformations by the number of
infix expression sub-nodes in the tree, including the original one in
the count. Parentheses are not added to expressions whose parent
is a parenthesized expression to avoid creating double parentheses.
Parentheses are also never added around the entire expression. Any
duplicate transformations are ignored, but still count towards the
maximum number of permutations considered.

For the parentheses removal, the visitor pattern is used to identify
parenthesized expressions that are sub-nodes of infix expressions.
Each parenthesized expression is then passed to the Necessary-
ParenthesesChecker from the Eclipse JDT Language Server to check
if the parentheses are needed. This is the same algorithm used by
the "Clean Up" feature within the Eclipse IDE. In the removal case,
we generate all possible removal permutations, but limit our se-
lection to lines with no more than 4 potential locations to avoid
exponential growth in the number of transformations.

3 RESULTS

While trends appear in our data, the details of the interactions be-
tween language model and transformation are somewhat complex.
Given space limitations, we will provide a brief summary of our
high level results thus far combined with a few deeper case studies.
In our surface level examination, we will use a combination of box
plots and paired t-tests with Cohen’s D effect sizes to compare
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the average entropy values of expressions in the original and in
the transformed code. As the distributions of average expression
entropy are approximately normal, the t-test is an appropriate mea-
sure of comparison. In one of the case studies, we will describe
some observations from our regression models; we omit the full
model details for space. In total, we had 8,608 swap transformations
across 7,444 lines, 20,874 parenthesis adding transformations across
9,541 lines, and 2,670 parenthesis removing transformations across
1,356 lines.

Table 1: Directed effect sizes of paired t-tests comparing
the entropy of the original code with the transformed code.
A negative effect size indicates that the transformation de-
creases entropy. All tests were significant with p <.001.

Global | Cache | Global Type | Cache Type
Swapping 0313 | 0.859 | 0.360 0.706
Add Paren -0.858 | 0.142 0.366 0.869
Remove Paren | 1.034 0.940 | 0.087 0.361

Figure 1 gives an overview of the effect of the transformations
with each of our language models: a generic ngram model, an
ngram model with a cache effect, and these models trained and
tested on corpora with abstracted types and literals. On the far
left, we see the results of swapping operands for both addition and
multiplication, the center - adding parenthesis to expressions, and
the far right - removing parenthesis. The effect sizes associated
with the differences between the original and transformed entropy
are located in Table 1.

Consider first the case of swapping the operands for multiplica-
tion and addition, represented by Figure 1a. Using a global model,
there is an entropy increase associated with a small effect size.
However, when using the cache model, the effect of this increase
is much greater with a large effect size. This increase is expected,
as the cache model weights local patterns more highly. Seeing no
difference in this model would indicate that the developers were
using patterns in the same file inconsistently (such as alternating
a+band b+ a) - a very unusual occurrence. The difference between
the global and cache model reoccurs in the models with abstracted
variable and literal types - though in both cases the effect is smaller.
This reduction is likely the effect of more predictable patterns over-
all in both the abstracted corpora; variable names tend to be the
least predictable tokens.

Providing a more detailed look, Figure 2 displays the relationship
of the average entropy of the original code versus the change in
entropy caused by the transformation. We have used a basic global
ngram model with the original variable names included. Here we
see a general downward trend - in cases where the original entropy
of the line is low, transforming tends to make the line less pre-
dictable. But when the line is highly entropic already, transforming
the line can in fact reduce the entropy. This downward pattern also
appears (even more strongly) in the adding parenthesis case, but
not in the removing parenthesis case. This suggests that some trans-
formations may be helpful for more surprising and less common
tasks, though preserving existing parentheses is preferable. In such
cases, developers might have fewer pre-existing solutions and thus
try more novel patterns.
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The case of adding parenthesis provides perhaps the most com-
plex and interesting story, as Figure 1b suggests. Using only a global
model, we see that adding parenthesis to developer written code
actually reduces the expression entropy. Not only that, but Table
1 shows that this is a large effect size. When accounting for the
local patterns with the cache model, this reversal goes away. In the
abstracted variable name models, there is an increase of entropy
after transformation, once again with the cache model having a
larger effect as expected. So how can we interpret this mixture
of results? For one, the effect of the choice of variable names is
significant. Since adding new parenthesis tends to increase entropy
when considering only the structural patterns, we conclude that
these projects are using variable names seen in the training corpus
that use different parenthetical patterns.

We speculate that this suggests that given some specific struc-
tural pattern, for example perhaps two expressions joined by a log-
ical OR, developer choices about whether to wrap the constituent
components are not consistent given particular variable names.
One developer may choose to write (a > 0) || (b >0) whereas another
may write a > 0 /| b > 0 without a strong preference between them.
However, in general the form (VAR > VAR) || (VAR > VAR) may be
preferable to the version without parenthesis.

While we are still exploring the actual patterns these preferences
fall along, we present a brief summary of a linear regression model
of global regression model’s entropy change. The explanatory vari-
ables used are the expression’s original entropy, the number of
transformations, the average AST depth of the transformations,
the number of tokens in the line, the line number in the file, the
operator of the parent node to the transformations, and the most
common operator in the expression (as described in the methodol-
ogy). We filter the response variable for outliers using the 1.5 % IQR
metric, check model diagnostics, and check that normalized vari-
ance inflation scores are less than 5. Though we omit details for
space, we note that that model has R?: 0.711. All coefficients except
the line number were significant; we list variables that explain at
least 1% of variance, a (+) indicating an increase in the variable
corresponds with an increase to the response variable and (-) indi-
cates the opposite. In decreasing order of variance explained, these
variables are: 1) the original entropy of the expression (-), 2) the
number of transformations (+), 3) the number of tokens in the line
(+), and 4) the type of the parent node. While we are interested
understanding how specific operators in the expression effect the
transformation, their effect size is small, so we avoid any specific
interpretation. However, we are still exploring the effects and inter-
actions of operator type with different language models and plan
to expand our analysis as we gather more data.

Now consider the case of removing parenthesis in Figure 1c.
Unlike the previous examples, the effect of the transformation using
a cache model is actually slightly smaller than the global model
- though both effects are still considered large. When abstracting
identifiers, the size of these effects are dampened to neglible and
small and more in line with prior cache observations. At the most
basic level, one possible interpretation here is that when developers
choose to include unnecessary parentheses for good reason. The
abstracted models suggest that the particular variable names may
be a more important factor in this decision than the underlying
structural patterns themselves. In the regular models, the cache
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Figure 1: Comparisons of the average entropy difference between the transformed source code and the original expression.
Positive values indicate the transformation increased the entropy and negative values indicate the transformation reduced

entropy.
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Figure 2: Hexbin plot comparing the original entropy of an
expression prior to transformation by swapping numerical
+/x operands and the difference in entropy between the orig-
inal and transformed expression. Higher counts indicate
higher point density. The model is an ordinary 6 gram model
with no cache and no identifier or literal abstraction.

model detecting a smaller difference than the global model suggests
that the usage of vocabulary together with parentheses tends to be
very consistent across different files and projects. It seems that with
parenthetical expressions, previously observed effects of locality
may not hold as strongly[11].

Finally, we note the inspiration for the parentheses transfor-
mations came from related work on programming understanding
and confusing code[4, 5]. Gopstein et al. found conflicts between
style guides advocating for using only necessary curly braces and
actual understanding of code. Parentheses serve a similar role in
segmenting expressions as curly braces do in control flow. Though
the predictability of source code and human understanding are
different metrics, we believe our results on parentheses may hint
at a similar conflict, that developers use them inconsistently and
possibly could benefit from their increased usage.

4 DISCUSSION

Our initial foray into understanding the distribution of human
choices in source code suggest that the conditional distribution of
implementation given meaning is skewed. However, there are cases
where this does not hold - and this provides opportunities to refor-
mat code into more normalized forms. We plan to expand this work
to 1) look at additional and larger transformations such as shuffling
lines, 2) compare the model evaluations of code predictability with
human studies of readability and understandability, and 3) develop
tools to rewrite code to be more understandable.
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