
Studying the Differences Between Natural and Programming Languages

Casey Casalnuovo
ccasal@ucdavis.edu

UC Davis Computer Science
2063 Kemper Hall, One Shields Avenue

Davis, CA 95616

Abstract

Programming languages are more repetitive and predictable
than natural languages, and this difference could arise from
either syntactic limitations or the semantic choices made by
the writers of these texts. We present one experiment that pro-
vides evidence against the hypothesis that this difference is
caused only by syntactic restrictions by removing closed vo-
cabulary words and showing the remaining content words in
Java are still more repetitive than those in English. We also
summarize ongoing experiments aimed at further understand-
ing the causes of the difference between natural and program-
ming languages.

Introduction & Background
Source code is sometimes conceived as primarily being a
product for machines to interpret and execute. This view
however misses a critical point, that source code is not only
a intermediate form of communication between human and
machine, but also a form of communication between humans
- a view advocated by Donald Knuth (Knuth 1984).

Few widely used software applications are developed by
a single person, and applications with code that cannot be
understood and maintained will be unlikely to succeed. In-
deed, it has long been known that most development time
is spent maintaining existing code rather than creating new
code (Lehman 1980). Therefore, it is entirely reasonable to
consider source code as much of a form of human commu-
nication as written text or speech, and like these it is also
amenable to the same sorts of statistical language models
used in natural language processing.

This observation about the potential adaptability of lan-
guage models to source code was originally made by Hin-
dle et al. (Hindle et al. 2012), who showed that not only
were language models developed for natural language ef-
fective at capturing features of code, but in fact more ef-
fective than in their original context. While Hindle’s work
focused on using basic ngram language models to capture
repetition in source code, this observation holds true for
various cache ngram models (Tu, Su, and Devanbu 2014;
Hellendoorn and Devanbu 2017), or even language models
leveraging deep neural networks such as Long Short Term
Memory Networks (LSTMs) (Hochreiter and Schmidhuber
1997). Figure 1 demonstrates this difference on a corpus of
Java and English, using the standard evaluation method of

Figure 1: Entropy comparisons of English and Java corpora
from 3 different language models.

entropy1. Lower entropy values indicate a token was less
surprising for the language model. These boxplots display
the entropy for each token in the test set, and show that
regardless of the model chosen, Java tokens are more pre-
dictable than English tokens. For details on the datasets and
language models, see the Data and Language Models sec-
tions respectively.

This repetition can also be visually represented without
any need for a language model by using a variant of the Zipf
plot (Zipf 1949). In a standard Zipf plot, we count all occur-
rences of a word in a text and assign each word a rank based
on frequency. The most frequent word receives rank 1 (or
0), then the next most frequent gets rank 2, and so on. These
data are plotted with ranks on the x axis and the frequencies
on the y axis. Zipf observed that these frequencies followed
a roughly a power law distribution, an observation famously
referred to as Zipf’s Law. When plotted in log-scale, this re-
lationship appears roughly linear.

We modify this plot in two ways. First, while Zipf put fre-
quency on the y-axis, we normalize the values to a percent-
age to make corpora more comparable. Secondly, we extend
the idea of a Zipf plot beyond merely individual words. In-
stead of just looking at the frequencies of individual words,
we can also look at the frequencies of sequences of words.
Figure 2 shows Zipf plots for unigrams and trigrams. The

1https://en.wikipedia.org/wiki/Cross entropy

increased repetition of source code over English can be seen
in the widening gap between the slopes of the two lines as
we increase the size of the sequence. The most frequent tri-
grams in Java are more frequent relative to the rest of the
corpus than is true in English. In comparison, the most fre-
quent unigrams are behave much more similarly in both Java
and English. While plots are not displayed here due to space
limitations this trend of an increasing gap persists for se-
quences of 2, 3, 4 and 5, and this increased repetition over
English exists in several other programming languages (C,
Haskell, Clojure, Ruby).

While source code is more repetitive and thus more pre-
dictable, it is not clear what source of these differences
are. Broadly, the difference could be explained from theo-
ries about the either syntactic or the semantic differences
between natural and programming languages. Syntactically,
additional repetition could arise from the more restricted
grammar of source code. Source code grammars are unam-
biguous, for ease of parsing; this limitation might account
for the observed repetition.

It’s also possible that the repetitiveness of source code
transcends syntactic limitations: perhaps source code has
greater domain specificity; perhaps programming is so cog-
nitively challenging for humans, that developers deliberately
limit their constructions to a smaller set of highly reused
forms.

The existence of design patterns (Johnson et al. 1995) and
programming idioms2 offer some evidence for this claim.
They recommend answering well known engineering prob-
lems with commonly used and tested patterns. For the pur-
poses of human to human communication, use of a doc-
umented design pattern can clearly indicate code structure
between experts, and reduce cognitive effort. Moreover, the
popularity of sites like Stack Overflow3, shows that solutions
to existing problems are often reused. In contrast, however,
programming language adoption is often driven by the avail-
ability of libraries(Meyerovich and Rabkin 2013), which
minimize source code repetition. Likewise, copy pasted
code is often targeted for refactoring, again potentially re-
ducing source code duplicates.

This leaves us with 2 questions: 1) how much does pro-
gramming language syntax influence repetitiveness in cod-
ing? and 2) what are the semantic factors that influence
repetitiveness? Here, we will present the results of an exper-
iment to address the former in detail and summarize some
preliminary results from other experiments trying to address
both questions in our Discussion section. Our experiment
answers the following question:

To what degree does removing closed vocabulary words
more closely associated with the syntactic structure of lan-
guage, and examining only the open vocabulary words as-
sociated with the content of a text explain the difference be-
tween Java and English?

As presented below, we find that ignoring the non-content
words and comparing only the content words does not elim-
inate all of the differences between the two corpora.

2See http://www.programming-idioms.org/.
3https://stackoverflow.com/

Experiment
Languages evolve with time. As they evolve, certain word
categories expand more easily than others. We can call cat-
egories of words where new words are easily and frequently
added open category words (e.g., nouns, verbs, adjectives).
The vocabulary in open categories can grown without limit;
as more text is added to the corpus, we would expect to con-
tinuously see new open-category words. Other categories are
closed - no matter how much text is incorporated into the
corpus, the set of distinct words in these categories is fixed
and limited.4

So what are the closed vocabulary words in English and
Java? In English, closed category words are often called
stopwords, and include conjunctions, articles, and pronouns.
In Java, elements such as reserved words, like for, if, or pub-
lic form a small list of language specific keywords that can-
not be used outside well defined contexts. The arithmetic
and logical operators, which combine elements in code, re-
semble conjunctions in English, and also constitute closed
vocabulary. Additionally, closely related is the notion of
punctuation, which appears in both natural and program-
ming languages, and respectively divides them into clauses
and sentences or expressions and statements.

Closed vocabulary tokens relate to the underlying struc-
ture and grammar of a language, whereas open vocabulary
tokens relate more to the content. A fixed number of (closed
category) markers defining how to structure the content of a
message in a language are sufficient. In contrast, new nouns,
verbs, adverbs, and adjectives in English, or types and iden-
tifiers in Java are constantly invented to express new ideas in
new contexts.

Suppose we remove the closed vocabulary words from a
corpus, and leave behind just sequences of open vocabulary
words. Gone are the elements most closely tied to the lan-
guage syntax; arguably, what remains are content words, that
most closely model the sequence of ideas expressed by the
text. Below is are examples of what part of these filtered se-
quences would look like in Java and English respectively:

... String lines data split response setContentType re-
sponse setCharacterEncoding int batchCount String s lines
s s trim ...

... Now 175 staging centers volunteers coordinating get
vote efforts said Obama Georgia spokeswoman Caroline
Adelman ...

If these sequences of content words are more repetitive in
source code than in natural language, this would be consis-
tent with the theory that the repetition in code is not wholly
due to syntactic constraints.

Language Models
For greater robustness, we compare corpora using three dif-
ferent language models, two which are variants on the sim-
pler ngram model, and one LSTM model.

For our two ngram models, we use a simple trigram
model, and a trigram model with a 10-token cache as de-

4While this category could very rarely be updated, this would
encompass unusual and significant changes in the language - for
instance a new preposition or conjunction in English.

Figure 2: Comparison of slopes for Zipf unigram and Zipf trigram plots.

scribed in Tu et al. (Tu, Su, and Devanbu 2014). The un-
derlying ngram model for both is implemented by KenLM
(Heafield 2011).

Our LSTM models are implemented in Tensorflow (Abadi
et al. 2016), with a minibatch size of 20, 1 hidden layer of
300 units, 13 training epochs, and a learning rate of 1.0. For
the LSTM we divide each corpus so it is split at file level
with 70% of files in the training set, and 15% each in the
validation and test sets. The ngram models do not use a val-
idation set, so we combine the validation and training sets
when training them. Otherwise, the test sets for all models
are equivalent for each corpus.

Data

To perform this experiment, we remove the closed category
or stopwords from our Java and English corpora. For En-
glish, we use a list of 196 words and contraction stems,
along with a list of 30 punctuation markers, derived from a
published NLTK stopword list (Bird 2006). In Java, we use
the Pygments syntax highlighting library5 to remove non-
identifier words, keeping only references to types, classes,
variables, and function names.

Table 1 shows the size of our two corpora after tokeniza-
tion before and after stopword removal. The Java corpus
consists of a diverse set of 12 projects including popular
GitHub projects and part of the Eclipse project, whereas the
English corpus comes from a random sampling of a 1 billion
token benchmark corpus (Chelba et al. 2013). We see that re-
moving these closed category words removes a greater per-
centage of the Java corpus (only 33% left for Java vs 53%
left for English). Existing work by Allamanis et al has shown
closed category tokens in code to be much more predictable
than identifiers(Allamanis and Sutton 2013), so if this fact
holds in English too, that fact that Java has proportionally
more could explain why it is more repetitive. However, as
we will show shortly, this difference in amount of stopwords
is insufficient to explain the differences seen between the
two texts.

5http://pygments.org/

Table 1: Summary of the corpora sizes for English and Java.
Java English

All Tokens 16852300 15708917
Open Category 5577507 8340284

Figure 3: Trigram Zipf plots show slopes for English and
Java open category words that indicate greater repetition in
Java.

Results

In Figure 3 we see the slopes of these content-word tri-
gram sequences sustain a significant divergence between
each other, indicating that Java content-word sequences are
more repetitive than the English content-words. Therefore,
our intuition should be that the language models should also
have an easier time predicting the Java sequences. Figure 4
confirms this intuition. Regardless of which language model
is used, the content words of Java remain easier to predict
than the content words of English. Additionally, note that
when compared to the average entropy of the entire cor-
pora seen in Figure 1, the open category entropy values are
higher, as expected from existing research (Allamanis and
Sutton 2013). So, while content words are in general less
predictable, Java content words are easier to predict than En-
glish content words.

Figure 4: Entropy comparisons of English and Java corpora
with closed category word excluded from three different lan-
guage models.

Discussion and Ongoing Work
Testing theories about the differences between natural and
programming languages while controlling for all possible
confounding factors is difficult. Comparing the effects of
the syntactic or the semantic differences in isolation is much
easier than modeling them together. This paper presented an
experiment on the syntactic elements of Java and English,
which provides some evidence that the content words of
source code are more repetitive than those in English, and
that previously observed effects are not entirely due to lan-
guage structure, but more work is needed to conclusively
establish this.

We have tried several other experiments to answer why
programming and natural languages differ, and summarize
the preliminary results here. Further considering the prob-
lem from a syntactic perspective, we have built comparable
parse trees for Java and English to evalauate how much of
the difference is due to the greater ambiguity in natural lan-
guage grammar. Though the effect sizes differ, the results
from this experiment also suggest that the differences be-
tween code and English cannot be explained just by syntax.

Therefore, it is likely that the content presented in source
code is indeed more repetitive than English content. As men-
tioned previously this could arise from a variety of causes,
including increased difficulty causing developers to artifi-
cially restrict how they code to more limited but reliable
choices, or perhaps software projects being more domain
specific and limited in scope. We gathered several corpora of
varying domain specificity, style, and language proficiency
in English to test these hypotheses. While these studies have
not yet provided any definitive evidence, our results com-
paring generic English with the writing of novice English
language learners has shown novice English learners write
more repetitively and predictably than what is observed from
native English writers. This behavior is consistent with the
hypothesis that when language is more cognitively difficult,
humans rely on a smaller set of restricted forms to compen-
sate. Also, when comparing technical domain specific cor-
pora with non-technical domain specific corpora, we found
only the technical corpora were more repetitive.

While these experiments form a starting point, we
hope to continue to research in this vein and in-
vite others to contribute so that we can achieve
a better understanding of how humans process
and produce natural and programming languages.

f(xj) =
e

−||xi−xj ||
2

2σ2
i

σi
√
2π

References
Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen,
Z.; Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin,
M.; et al. 2016. Tensorflow: Large-scale machine learn-
ing on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467.
Allamanis, M., and Sutton, C. 2013. Mining source
code repositories at massive scale using language modeling.
In Mining Software Repositories (MSR), 2013 10th IEEE
Working Conference on, 207–216.
Bird, S. 2006. Nltk: the natural language toolkit. In Pro-
ceedings of the COLING/ACL on Interactive presentation
sessions, 69–72. Association for Computational Linguistics.
Chelba, C.; Mikolov, T.; Schuster, M.; Ge, Q.; Brants, T.;
and Koehn, P. 2013. One billion word benchmark for
measuring progress in statistical language modeling. CoRR
abs/1312.3005.
Heafield, K. 2011. Kenlm: Faster and smaller language
model queries. In Proceedings of the Sixth Workshop on
Statistical Machine Translation, 187–197. Association for
Computational Linguistics.
Hellendoorn, V. J., and Devanbu, P. 2017. Are deep neural
networks the best choice for modeling source code? In Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ser. ESEC/FSE, 763–773.
Hindle, A.; Barr, E. T.; Su, Z.; Gabel, M.; and Devanbu, P.
2012. On the naturalness of software. In Proceedings of
the 34th International Conference on Software Engineering,
ICSE ’12, 837–847. Piscataway, NJ, USA: IEEE Press.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Johnson, R.; Gamma, E.; Helm, R.; and Vlissides, J. 1995.
Design patterns: Elements of reusable object-oriented soft-
ware. Boston, Massachusetts: Addison-Wesley.
Knuth, D. E. 1984. Literate programming. The Computer
Journal 27(2):97–111.
Lehman, M. M. 1980. Programs, life cycles, and laws of
software evolution. Proceedings of the IEEE 68(9):1060–
1076.
Meyerovich, L. A., and Rabkin, A. S. 2013. Empirical anal-

ysis of programming language adoption. ACM SIGPLAN
Notices 48(10):1–18.
Tu, Z.; Su, Z.; and Devanbu, P. 2014. On the localness of
software. In Proceedings of the 22Nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineer-
ing, FSE 2014, 269–280. New York, NY, USA: ACM.
Zipf, G. 1949. Human behavior and the principle of least
effort. Addison-Wesley, Cambody Mus. Am. Arch. and Eth-
nol.(Harvard Univ.), Papers 19:1–125.

