
GitcProc: A Tool for Processing and Classifying GitHub Commits
Casey Casalnuovo

Yagnik Suchak
University of California, Davis, USA
{ccasal,yvsuchak}@ucdavis.edu

Baishakhi Ray
University of Virginia, USA

rayb@virginia.edu

Cindy Rubio-González
University of California, Davis, USA

crubio@ucdavis.edu

ABSTRACT
Sites such as GitHub have created a vast collection of software
artifacts that researchers interested in understanding and improv-
ing software systems can use. Current tools for processing such
GitHub data tend to target project metadata and avoid source code
processing, or process source code in a manner that requires sig-
ni�cant e�ort for each language supported. This paper presents
GitcProc, a lightweight tool based on regular expressions and
source code blocks, which downloads projects and extracts their
project history, including �ne-grained source code information and
development time bug �xes. GitcProc can track changes to both
single-line and block source code structures and associate these
changes to the surrounding function context with minimal set up
required from users. We demonstrate GitcProc’s ability to capture
changes in multiple languages by evaluating it on C, C++, Java,
and Python projects, and show it �nds bug �xes and the context of
source code changes e�ectively with few false positives.

CCS CONCEPTS
•Information systems →Data mining; Information extrac-
tion; Summarization; Retrieval e�ciency; •Software and its en-
gineering →Software maintenance tools;

KEYWORDS
Git Mining Tool, Information Extraction, Language Independence
ACM Reference format:
Casey Casalnuovo, Yagnik Suchak, Baishakhi Ray, and Cindy Rubio-González.
2017. GitcProc: A Tool for Processing and Classifying GitHub Commits.
In Proceedings of 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis , Santa Barbara, CA, USA, July 2017 (ISSTA’17-DEMOS),
4 pages.
DOI: 10.1145/3092703.3098230

1 INTRODUCTION
Software development and maintance involves changing programs
to add new features, �x defects, and improve performance. Such
changes take place in many forms: adding new methods, imple-
menting di�erent programming constructs like concurrency and
exception handling, updating API functions, etc. Managers, de-
velopers, and researchers are often interested in analyzing such
evolutionary data to understand the characteristics of software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA’17-DEMOS, Santa Barbara, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5076-1/17/07. . . $15.00
DOI: 10.1145/3092703.3098230

development and maintenance. For example, a manager might be
interested to know “How does programming language choice a�ect
software quality?". Similarly, a developer might wonder “If I use
many asserts in my code, does it help reduce bugs?". Finally, re-
searchers might be curious “How does API evolution impact code
quality?", or “What are the characteristics of di�erent real-world bugs
— e.g., concurrency and performance bugs?".

This paper presents GitcProc, a tool that tracks changes to code
structures in git projects to facilitate answering project evolution
questions. Given a project’s git repository URL as input, GitcProc
(i) retrieves global statistics of the project’s evolution consisting of
number of commits, commit dates, number of associated authors,
and which commits are involved in bug-�xes, and (ii) tracks the
changes of particular program element(s) of interest over time. For
example, GitcProc can measure how many changes have taken
place involving the synchronization mechanism, a language prim-
itive of Java to avoid race conditions. GitcProc is also able to
�nd out the location of the changes (i.e., project version, �le, and
method), the commit at which such changes are made, and the asso-
ciated developers. From the input git URL, GitcProc retrieves the
entire evolutionary history of the project in the form of a commit
log, which is parsed in a language independent way.

The main challenge addressed by GitcProc is the processing
and classi�cation of commit di�s. We have designed and imple-
mented GitcProc to be lightweight, easy to use, extensible, and
e�cient. Our approach for processing commits is based on regular
expression matching, and scope tracking. GitcProc processes com-
mit di� code fragments; it does not require to compile or process
the entire project’s source code. GitcProc is easy to use and does
not require the user to learn a new domain speci�c language (DSL).
We demonstrate the extensability of GitcProc by implementing
support for four languages: C, C++, Java, and Python. Finally, we
present three examples that show the variety of scenarios in which
GitcProc can be used, and its e�ectiveness at identifying relevant
commits in an e�cient manner.

The rest of the paper is organized as follows. Section 2 presents
a motivating example, and Section 3 describes GitcProc. Section 4
shows our experimental evaluation, Section 5 decribes related work,
and Section 6 concludes.

2 MOTIVATING EXAMPLE
This section describes the features of GitcProc using the exam-
ple in Table 1. Assume a user wants to analyze evolution of a
project androidannotations using GitcProc. First, our tool re-
quires three set of inputs: (a) GitHub project URL excilys/and-
roidannotations, (b) some con�guration options like language
(e.g., Java) (see Section 3 for details), and (c) a set of terms that the
user wants to search, say “synchronized” and “UncaughtException-
Handler”. Since “synchronized” can be applied to either method

396

ISSTA’17-DEMOS, July 2017, Santa Barbara, CA, USA Casey Casalnuovo, Yagnik Suchak, Baishakhi Ray, and Cindy Rubio-González

Table 1: Bug �x commit for synchronized block and Un-
caughtExceptionHandler API function.

Sample Input:
Project’s Name: excilys/androidannotations
Search Keyword: "synchronized", included, block

"UncaughtExceptionHandler", included, single
Con�guration: Languages: Java

Sample Output: Change Summary
Project: androidannotations
Commit ID: ed8e0318f6d767882c24c563bf9d0db02ccbc51f
Author & Date: Joan Zapata, 2013-10-17
Bug�x Commit? Yes

Commit Msg: Fixed #646 sending background exception
to the global UncaughtExceptionHandler

Function Patch:
+ @Test

+ public void propagateExceptionToGlobalExceptionHandler (){

+ // Prepare lock on which we'll wait for the

+ // background exception handler to catch the exception

+ final Object LOCK = new Object ();

+ Thread.setDefault ...(new Thread.UncaughtExceptionHandler() {

+ @Override

+ public void uncaughtException (...) {

+ synchronized (LOCK) {

+ propagated ... = true;

+ LOCK.notify ();

+ }

+ }

+ });

Sample Output: Patch Summary per Function
File: test15/ThreadActivityTest.java
Test File? Yes
Function Name: propagateExceptionToGlobalExceptionHandler
Lines: added = 14, deleted = 0
Keywords: synchronized added = 4, deleted = 0

UncaughtExceptionHandler added = 1, deleted = 0

declarations or block statements, the user may want to know how
many lines are added or deleted inside “synchronized” blocks. In
contrast, the user may want to search for “UncaughtException-
Handler” as single-line keyword. While searching for a keyword,
GitcProc provides both single-line and block options.

With the GitHub URL as input, GitcProc downloads the whole
repository in the local machine using the command git clone. It
then retrieves the entire evolutionary history using git log; the log
contains details of each commit made to the project to date including
the commit message, commit related metadata, and the associated
program patch (see Table 1). Next, GitcProc parses the retrieved
log to output a summary of the changes at two granularities: (i)
an overall summary of the changes per project, and (ii) a detailed
summary of each modi�ed function/method.

Change Summary. GitcProc processes the metadata from the
log �le and retrieves commit speci�c information: the identifying
SHA, commit metadata like author information, author date, etc.,
as shown in Table 1. It also uses a keyword search to determine if
a commit is related to bug �xing. GitcProc searches for bug-�x
related words such as error, bug, defect, and �x within the commit
message. For example, since our commit message (Fixed #646 ...)
contains the term "�x", GitcProc classi�es it as a bug-�x commit.

Patch Summary per Function. Each commit can change mul-
tiple �les and subsequently multiple functions. GitcProc processes
the di� patch associated with each commit and outputs statistics
for each modi�ed function/method. The tool outputs the �le name,
method name, and number of lines that are added and deleted dur-
ing the method change. Further, GitcProc checks whether the
changed method contains the input keywords. If found, it also
outputs statistics relevant to them. For example, the sample patch

(i)	Download	all	the	
commits	per	project	
(git log	–U99999	-W)

Process	Commit	
Message

Process	Patch

Bug	vs.	
Non-Bug	

Classification Change	Summary	:
- Project,	Commit	ID	(sha)
-Author	&	Committer	info
<GitHub	ID,	Email,	Date-time>
-Bugfix commit?	(yes/no)

Input:	
- GitHub	project	URL(s)
- Search	keywords
- Configuration	options

Keyword	
Classification

Extract	
Meta-

Information Patch	Summary	per	Function:
-Project	,	Commit	ID	(sha)
- File,	Test	file?	(yes/no)
- Function	name
-#Lines	Added	,	Deleted	
-#Keywords	Added	,	Deleted

Figure 1: GitcProcWork�ow

contains both the single-line and block keywords. “Synchronized”
being a block keyword, 4 lines have changed under the block. Thus,
our tool reports 4 additions and 0 deletions. Since “UncaughtExcep-
tionHandler” is marked as a single-line keyword, our tool reports
only one line of addition. GitcProc also checks whether the modi-
�cation is done in a test �le by checking whether the “test” keyword
is present in the �le path and name. In our example, the tool marks
the �le ThreadActivityTest.java as a test �le.

Users can have GitcProc output the extracted information in
CSV format, or in a Postgres database. Users can then query the
information with SQL or load the CSV �les into a variety of frame-
works to generate further metrics of interest.

3 TOOL ARCHITECTURE
GitcProc is implemented in Python (5000 SLOC) and Java (300
SLOC), and is available under BSD license 1 2. Figure 1 shows
GitcProc’s inputs: (1) a �le with a list of GitHub repositories,
(2) a list of keywords, and (3) con�guration options. The search
con�guration option includes exact and approximate match. For
exact match, a keyword is only considered matched if it is sur-
rounded by non-alphanumeric characters, while the approximate
match should be contained in the line. The exact match is useful
for matching code block structures such as synchronized, for, etc.
or speci�c function calls. The approximate match is useful where
projects use di�erent functions for similar functionality, such as
assert, ASSERTEQUAL, mutex_assert, etc.—all indicate assertions.

The con�guration options also include two �ags. The �rst �ag
is either included or excluded. Included is the standard case, and
signi�es this keyword as one to be tracked. The �ag excluded
excludes keywords that overlap with approximate match keywords.
For instance, we would use excluded with assert.h to ignore assert
import statements while searching for assertion calls. The second
�ag is either single or block, denoting if the keyword is single-line
or a block structure. Finally, GitcProc takes a .ini �le that speci�es
database connection information (if any), languages to parse, and
optional �ags for debugging and logging.

GitcProc outputs a line for each method change in every com-
mit. Figure 1 gives an example of the information contained in the
output. These rows are identi�ed by a 4-tuple of project, commit
ID (SHA), �le and function name, but are not necessarily unique as
functions may share a name as a result of overloading. Each row
records the additions and deletions to the function, all keywords
1GitHub repository: https://github.com/caseycas/gitcproc
2Short demo: https://youtu.be/5sOUoMHuP9s

397

https://github.com/caseycas/gitcproc
https://youtu.be/5sOUoMHuP9s

GitcProc: A Tool for Processing and Classifying GitHub Commits ISSTA’17-DEMOS, July 2017, Santa Barbara, CA, USA

found in the function, and whether the �le is a test �le. A separate
�le records information such as commit date and author, along with
whether the commit is bug-�xing or not.

3.1 Log Retrieval and Processing
Given a list of GitHub projects, GitcProc retrieves the full history
of all non-merge commits along with their commit logs and asso-
ciated patches. The patches contain the complete �le with lines
added and deleted for a speci�c patch, highlighted by +/- at starting
of the line, respectively. In particular, we use the command git
log –date=short –no-merges -U99999 –function-context –extensions,
where extensions is the set of extensions for the user speci�ed
language of interest. The options -U99999 and –function-context
download commit patches and provide su�cient context to parse
function names in which changes occurred. Next, we process the
retrieved logs, which consists of the following three steps:

(1) Extract Commit Meta Information. For each commit, we
extract its ID, author information, and date.

(2) Text Processing. GitcProc can infer whether a given com-
mit message is bug related or not. This feature is useful to study
development time bug-�xing activities, since these are not always
recorded in an issue database. GitcProc analyzes the commit mes-
sages associated with each commit for the entire project evolution,
looking for error related keywords. First, we convert each commit
message to a bag-of-words and then stem them using standard NLP
techniques. Similar to [7], GitcProc marks a commit as a bug-�x if
the corresponding stemmed bag-of-words contains at least one of
the error keywords: ‘error’, ‘bug’, ‘�x’, ‘issue’, ‘mistake’, ‘incorrect’,
‘fault’, ‘defect’, ‘�aw’, and ‘type’.

(3) Patch Processing. We provide a general parser for code
patches included in GitHub commit logs. The parser tracks change
to the function level, providing information on the number of added
and deleted lines for each function. If any of the code changes in a
given function include the keywords of interest, then these changes
are associated with that function’s context. The tool allows two
types of keywords: single-line and block. The single-line keywords
are code structures that consist only of one line, such as a function
call. Block keywords are code structures that have an associated
scope, including conditional and loop statements, try/catch blocks,
synchronized blocks, etc. Changes inside a block’s scope are asso-
ciated with that block.

We use regular expressions and stacks of open scopes to track
when functions and code blocks begin and end. There are two
stacks, one for the old and new versions of the source code, which
maintain a record of three types of changes: functions, keyword
blocks, and other. Whenever the scope of a new source block is
opened (identi�ed by brackets in C or Java, or indents in Python),
a block is added to the stack. All further changes are associated
with these open scopes until the corresponding closing symbol is
found, and popped from the stack. The type of change put on the
stack is decided by regex matching. Keyword blocks for matches to
user-de�ned keyword, function blocks for matches to the language
speci�c function regexes when no functions are currently on the
stack, and all other source blocks are classi�ed as other.

3.2 Usability and Generality
One of our major goals is ease of use. Using GitcProc requires
Java 7 and Python 2.7, along with the Python libraries PyYaml, nltk,

psycopg2, and git. As described earlier, running the tool requires
providing the list of GitHub repositories, search terms of interest,
and con�guration options.

Currently, GitcProc is able to parse C++, C, Java, and Python
di� logs. GitcProc is designed to be extensible to other languages
as long they have some notation of scope and code blocks. Ex-
tending the tool to languages that express scope either through
indentation (Python) or brackets (C/C++/Java) requires creating
only a new LanguageSwitcher class, which contains a set of regular
expressions that describe how the language represents functions,
strings, comments, and optionally classes, along with a few pre-
processing functions. This class is about at most 100 SLOC. It is
possible to extend GitcProc to languages with other representa-
tions of scope, though this requires more e�ort than adding just
the regex de�ning class described above.

3.3 Limitations
As with any regex based tool, our log parser will not work in
all cases. Robustly identifying functions in C/C++ is particularly
di�cult, and our tool misses some cases. We do not currently
support �nding constructors and destructors in �les outside of
their class declaration or functions declared in K&R C style. More
generally, we do not yet handle very complex scope changes in
C/C++/Java with more than 2 changes in scope in a line, such as:
int foo(int x) if (x < 0) return 0; else return 1;

In our experience, such examples are uncommon in real project
code. In general, our parser assumes each version of the code is
compilable. However, this is not always true for extracted code. In
these and other cases where our tool is unable to parse a line or
chunk correctly, it produces a warning �ag or error message in the
output for that section.

4 EXPERIMENTAL EVALUATION
We use GitcProc to process and classify a total of 153,364 commit
logs from projects written in C, C++, Java, and Python (see Table 2).
First, we evaluate the e�ectiveness of GitcProc in identifying bug-
�x commits based solely on commit messages. Second, we consider
log classi�cation based on speci�c search keywords.

Bug Classi�cation. We used GitcProc to process a total of
129,316 commit logs from 10 C++/C projects: git, mysql, folly,
subvim, xbmc, v8, reds, Torque3d, bitcoin, and mongo. Our tool
found that 49,161 are bug-�x related, while the remaining logs
are non-bug-�x related. We randomly sampled 100 bug-�x related
commit logs, spread evenly among the projects, except for the
project subvim, which had very few commits. Manual inspection
consisted of looking at the code patch along with any available issue
tracker and source code data to determine whether the commit was
actually bug �xing or not. We found 4 false positives: in two cases
the developer used the word ‘�xed’ to refer to length and in two
cases to refer to improvements made to error handling, not bug
�xes. Additionally, there was one other case where we could not
determine whether the commit was intended to be a bug �x.

Keyword-Based Log Classi�cation. Here we present three
case studies to evaluate GitcProc’s precision in identifying the
context and changes associated with search keywords : (1) single-
line keyword assert in C/C++ projects, (2) single-line keyword
asarray (a NumPy API function) in Python projects, and (3) block
keyword synchronized in Java projects.

398

ISSTA’17-DEMOS, July 2017, Santa Barbara, CA, USA Casey Casalnuovo, Yagnik Suchak, Baishakhi Ray, and Cindy Rubio-González

Table 2: Total number of projects and commits per lan-
guage. The column ‘Changed Functions’ reports the num-
ber of changed functions containing the desired search key-
words followed by the total number of changed functions. In
the evaluation, we sample from the # of functions in bold.

Total Total Commits Changed
Language Projects Commits w/Keywords Functions

C/C++ 10 129,316 20,918 210,293/2,118,761
Python 8 7,768 102 142/44,279
Java 11 16,280 890 1,378/36,002

Total 29 153,364 21,910 211,813/2,199,042

(i) Asserts in C/C++. We evaluate GitcProc on the same 10
C/C++ projects, all of which make use of assertions. We select
as ‘keywords of interest’ any approximate matching of the word
assert as well as exact matches for the function names ut_a and
ut_ad, which are known to be assert functions in the mysql
project. We run GitcProc to �nd the commits in which modi�ed
lines of a function include the above assert related keywords.

Table 2 reports the number of changes at the commit and function
level for both keyword containing and all source code changes. Of
the 129,316 commits that modify C or C++ �les, GitcProc �nds
that 20,918 contain the keywords of interest. For functions, there
were 2,118,761 changed in total, but only 210,293 contain assert
keywords. We evaluate the precision of our tool by randomly
sampling 100 of these functions.

We mark a sample as true positive if we verify that the changed
function exists in the commit, and that we correctly count both the
lines where assertions were added/deleted along with the changes
to all lines. We found that 98 out of 100 samples are correctly
classi�ed and reported. The two remaining samples were false
positives. One was correctly classi�ed, but the reported counts
were wrong. The other did not include assert keywords.

(ii) Asarray API function in Python. asarray is a NumPy
API function that we search for in Python projects. We chose eight
Python projects that use NumPy libraries: bottleneck, crab, distar-
ray, minpy, matplotlib, numba, NumPy, and spartan. For the �rst
four projects we process all the commits, for the others we process
commits from 1st January 2015 till the current date; Table 2 shows
the summary. Out of 7,768 commits studied, only 102 contained
the asarray function, as found using approximate single keyword
search. Out of 44,279 changed methods, only 142 of them contained
asarray. We also computed the accuracy of keyword search using
the same method as described above and examined 20 commits
selected randomly; 19 were correctly classi�ed. One false posi-
tive came from project minpy—although the commit contains one
asarray addition, the corresponding method name was not correct.

(iii) Synchronized in Java. We use GitcProc to identify com-
mits that modify code within synchronized blocks. We consider 11
Java projects including android, atmosphere, clojure, CraftBukkit,
dagger, and elasticsearch. We process and classify a total of 16,280
commits, from which 890 are reported to be synchronized related.
As with previous case studies, we identify changed functions that
include the synchronized keyword. We found that 1,378 out of
36,002 changed functions include this block keyword. We randomly
selected 50 samples, of which 48 were correctly classi�ed. Two were
incorrect: (1) the commit modi�es a function called synchronized,

and not a synchronized block, and (2) the number of modi�ed
lines is incorrect.

Performance. We ran our tool on a 2.67GHz server with 100GB
RAM. The median throughout (lines parsed per second) was 13,757,
while median time was 33 secs for Java, 18 secs for Python, and 38
mins for C/C++, which had larger projects.

5 RELATEDWORK
GHTorrent[5] and GitHub Archive [1] are designed for large scale
language independent repository mining, primarily focusing on
GitHub metadata. Other frameworks for mining software artifacts
exist, including tools to scalably build web-crawlers to extract di-
verse artifacts [11], search engines similar to GHTorrent but not
restricted to GitHub [2], or proposals for fact extraction based ap-
proaches [6]. Other tools include Repograms [8] to visualize high-
level commit information, and Chronos [9] to visualize changes
over time to speci�c regions of code.

BOA [4] is a domain-speci�c language and infrastructure to
extract and analyze data from repositories. It supports queries
on metadata of all Github projects, and source code AST-based
analysis of Java �les only. Gitana [3] converts metadata and source
code information into a database format. MetricMiner [10] is a
cloud-based web application that processes commit logs and creates
code metrics, currently implemented only for Java. We propose a
lightweight source code analysis that sits between metadata focused
tools like GHTorrent and tools that o�er code analysis but require
learning DSLs or are di�cult to extend to other languages.

6 SUMMARY
We presented GitcProc, a tool to extract information from git
log metadata and source code di�s. Its lightweight regex-based
approach makes it extensible to other languages, which we demon-
strated by tracking diverse code structures in C, C++, Java, and
Python. GitcProc allows researchers to generate data locally, while
requiring only a list of project names, keywords of interest, and
con�guration input/output options. We hope the extensibility and
low set up costs of GitcProc will assist in fostering reproducibility
and ease of extraction in future software studies.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments.
This work was supported by NSF grant CCF-1464439, and a CAM-
POS Fellowship.

REFERENCES
[1] GitHub Archive. https://www.githubarchive.org/.
[2] T. F. Bissyandé, F. Thung, D. Lo, L. Jiang, and L. Réveillère. Orion: A Software

Project Search Engine with Integrated Diverse Software Artifacts. In ICECCS’13.
[3] V. Cosentino, J. L. C. Izquierdo, and J. Cabot. Gitana: A SQL-Based Git Repository

Inspector. In ER’15.
[4] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa: a Language and

Infrastructure for Analyzing Ultra-Large-Scale Software Repositories. In ICSE’13.
[5] G. Gousios. The GHTorrent Dataset and Tool Suite. In MSR’13.
[6] P. Makedonski, F. Sudau, and J. Grabowski. Towards a Model-based Software

Mining Infrastructure. SIGSOFT SEN’15.
[7] A. Mockus and L. G. Votta. Identifying Reasons for Software Changes using

Historic Databases. In ICSM’00.
[8] D. Rozenberg, I. Beschastnikh, F. Kosmale, V. Poser, H. Becker, M. Palyart, and

G. C. Murphy. Comparing Repositories Visually with Repograms. In MSR’16.
[9] F. Servant and J. A. Jones. Chronos: Visualizing slices of source-code history. In

VISSOFT’13.
[10] F. Z. Sokol, M. F. Aniche, and M. A. Gerosa. MetricMiner: Supporting Researchers

in Mining Software Repositories. In SCAM’13.
[11] L. Zhang, Y. Zou, and B. Xie. A Scalable Crawler Framework for FLOSS Data. In

Internetware’13.

399

https://www.githubarchive.org/

	Abstract
	1 Introduction
	2 Motivating Example
	3 Tool Architecture
	3.1 Log Retrieval and Processing
	3.2 Usability and Generality
	3.3 Limitations

	4 Experimental Evaluation
	5 Related Work
	6 Summary
	Acknowledgments
	References

