
Does Surprisal Predict Code Comprehension Difficulty?
Casey Casalnuovo (ccasal@ucdavis.edu)1, Prem Devanbu (ptdevanbu@ucdavis.edu)1,

Emily Morgan (eimorgan@ucdavis.edu)2

Department of Computer Science1, Department of Linguistics2

University of California, Davis, USA

Abstract

Recognition of the similarities between programming and nat-
ural languages has led to a boom in the adoption of language
modeling techniques to improve tools to assist developers.
However, the measure of surprisal, which guides the training
and evaluation of many of these methods, has not been vali-
dated as a measure of cognitive difficulty in programming lan-
guage comprehension as it has for natural language. We per-
form a controlled experiment to evaluate human comprehen-
sion on fragments of source code that are meaning equivalent
but with different surprisal. We find that more surprising ver-
sions of code take humans longer to finish answering correctly.
We also provide practical guidelines to design future studies
for code comprehension and surprisal.

Keywords: Code Comprehension; Language Model Surprisal;
Transformer Model

Introduction
As software has become nearly ubiquitous, people, even
those who do not consider themselves to be developers, in-
teract with code and learn to program. One of the largest
costs in software engineering comes from maintaining exist-
ing code (Banker, Datar, Kemerer, & Zweig, 1993); under-
standing code that others have written (or returning to code a
person has written themselves) takes up a large portion of a
programmer’s time (Tiarks, 2011).

Though code comprehension research has a long his-
tory (Siegmund, 2016), there have been more recent calls
by psycholinguists to explicitly understand the cognitive
processes that drive programming (Fedorenko, Ivanova,
Dhamala, & Bers, 2019). Code is often treated as just another
kind of language; people refer to teaching coding in terms of
”literacy” and describe its structure using terms from linguis-
tics such as grammar, syntax, and semantics. This acknowl-
edgement of the human communicative element of program-
ming is not new: Knuth’s Literate Programming emphasizes
writing code not for machines, but for the benefit of other
developers (Knuth, 1984). While the degree to which natu-
ral and programming language share cognitive processes is
unknown, recent work has shown some regions of the brain
used in natural language processing are also used in program-
ming (Siegmund et al., 2014). In contrast, eye tracking stud-
ies have shown people read code differently than natural lan-
guage; their eyes jump around non-linearly, and this effect
increases with experience (Busjahn et al., 2015).

Appreciation of the similarities and differences between
natural and programming languages have led to the adoption
of computational language models for code. Programming
language is more repetitive and has lower surprisal than natu-
ral language, which makes these language models even more

effective in a source code context (Hindle, Barr, Su, Gabel, &
Devanbu, 2012), allowing for their adoption to many applica-
tions. Automatic completion of code, finding defects and er-
rors, or generating documentation from code are all examples
of the kinds tools making a real impact - see (Allamanis, Barr,
Devanbu, & Sutton, 2018) for an extensive survey. These
tools often leverage language model surprisal and cross en-
tropy as measures to train these tools. Moreover, the repet-
itive nature of code persists between many natural and pro-
gramming languages, and some of this is contingent on hu-
man choices, above and beyond that which would be expected
by inherent differences in language structure (Casalnuovo,
Sagae, & Devanbu, 2018). This is suggestive of surprisal hav-
ing an impact on human comprehension of code.

Though these tools and methods have obtained wide accep-
tance, the underlying measures of surprisal and entropy used
by language models have thus far seen very little validation as
relating to what makes code ”better” for humans. This lack of
testing of assumptions and validating tools is a longstanding
problem (Siegmund, 2016). For example, often times when
assessing code readability, experiments have relied on devel-
oper’s perception of code, but this is separate from how easy
the code is to actually understand (Scalabrino et al., 2017). In
natural language, the relationship between language model
surprisal and cognitive load is fairly established; higher sur-
prisal leads to higher load (Levy, 2008; Smith & Levy, 2013),
but this is not true for code.

In code, this is complicated by developers needing to si-
multaneously write code for two ’audiences’— one to the
machine, which obtains precise semantics through execution,
and the other audience is to other humans. These effects in-
termingle in complex ways, with some elements of code, such
as variable names, whitespace formatting, or parenthesis use
typically possessing no meaning for the machine channel -
they communicate only to other humans (Casalnuovo, Barr,
Dash, Devanbu, & Morgan, 2020).

Thus, for code, two expressions can have identical compu-
tational meaning, but be written in different ways. For exam-
ple, consider the statement a = b/c∗d;. This could be equiv-
alently written as a = (b/c) ∗ d;, which clarifies the order of
operations to the developer, but has no effect on the mean-
ing to the machine. Alternatively, consider how the common
code idiom for incrementing is usually written as i = i+ 1;
and not i = 1+ i;. Developers may choose to write one over
the other due to either readability concerns or possibly the
pressures of existing style or convention.

This feature enables opportunities to explore surprisal in
code via controlled experiments. By looking at source code

snippets with different surprisal, but equivalent meaning, we
can test hypotheses about whether surprisal can measure the
readability and understandability of code. Most related to this
study is the recent work by Casalnuovo et al. (Casalnuovo,
Lee, Wang, Devanbu, & Morgan, 2019), which looks at the
relationship of human preference and surprisal. They found
humans tended to prefer code with lower surprisal in a forced
choice experiment between two lines with different surprisal
but identical computational meaning. We use similar method-
ology and transformations in our study.

In contrast, we wish to look at how surprisal influences
human comprehension of source code. One way to measure
if someone understands code is if they can execute it: given
some input can they correctly describe the output? If we have
two snippets of source code with equivalent meaning but dif-
ferent surprisal, we can ask humans to compute the outcome
of each of them. Thus, we ask two primary research ques-
tions to see how easily they understood each variant: how
accurately do humans compute the answer, and how quickly
do they correctly compute the answer?

Methodology
Materials
Data To develop meaning-equivalent source code frag-
ments, we first train a language model to predict the surprisal
of code. Our training and test data comes from the 1000
most starred Java open source projects on Github (https://
github.com/). From this set, we selected a smaller sample
of the 30 Java projects with the most opportunities to perform
meaning preserving transformations. We split these into 21
and 9 projects for the training and testing set, chosen ran-
domly, with some preprocessing to remove potentially dupli-
cate or highly similar files by removing those with identical
filename and parent directories.

Language Model Training We use a Transformer
Model (Vaswani et al., 2017) with Byte-Pair Encoding
(BPE) (Sennrich, Haddow, & Birch, 2016) to train the
model and obtain surprisal scores for each line. BPE creates
subtokens of roughly similar frequency from the tokens, re-
ducing vocabulary size to 9165 subtokens. Code has a larger
vocabulary than natural language, which makes training with
neural models difficult, and BPE has proven effective at
addressing this vocabulary size problem (Karampatsis & Sut-
ton, 2019). This model is implemented in TensorFlow (Abadi
et al., 2016), using 2 layers and dimensions of 512 for the
attentional and feedforward layers, 8 attention heads, and a
dropout rate of 0.1. We train for 10 epochs, with learning
rate 0.2, a batch size of 15000, and 200 tokens per sequence.

Meaning Preserving Transformations We use 4 cate-
gories of meaning-preserving code transformations. Table 1
shows all our transformation with examples in pseudocode.
At the top, we have two types of operations swapping around
arithmetic and relational operators. For the arithmetic swaps,
we look at + and ∗ operations, which are commutative, and

Table 1: Pseudocode examples of transformations. First col-
umn is the general type of operation, second lists the opera-
tors involved, and the last two show an example.

Swap
Arithmetic

* a * b b * a
+ a + b b + a

Swap
Relational

==, != a != b b != a
<, <=, >, >= a <= b b >= a

Adding Parenthesis a + b * c a + (b * c)
Removing Parenthesis a + (b * c) a + b * c

conservatively swap only in cases using numerical variables
and literals, avoiding expressions with functions as they may
contain side effects that change code meaning. For relational
operators, we swap the operands around ==, ! =, >, >=,
<, and <=. If the relation is not symmetric (less and greater
than variants), we also invert the operator when swapping to
maintain precise meaning. We also add and remove paren-
theses that are not essential to the meaning of the code, but
are often added by developers to be included for readability.
These examples appear in the bottom two rows of Table 1.

Experimental Materials Selection and Validation We se-
lected a total of 64 pairs of original and transformed lines
of code (16 from each transformation) to present to study
participants, using a combination of initial random sampling
and then manual selection, choosing equal numbers of items
in which the transformation increases and decreases the sur-
prisal of the line relative to what was written originally. We
randomly sampled 64 examples for each transformation from
beyond the median in both the positive and negative direction
to get examples with high surprisal differences. We filtered
these to automatically exclude expressions that were likely
to be automatically generated (e.g. hashes), contained rare
operations (like bit shifts), were overly easy (comparisons to
null or 1), or were over 80 characters long. From these we
manually selected 16 samples per transformation, so that no
2 examples would be too similar, and avoided samples that
required too much contextual information (such as calls to
anything but the most basic functions, like size() on a list).

Next, we artificially created concrete values to initialize all
variables used in the expression. These initializations were
used for both versions of the expression, and if there were
more than 1 variable to initialize, the order was randomized.
We used simple initializations for the variables in each ex-
pression, to reduce cognitive overhead, but also such that par-
ticipants would have to evaluate the entire expression. Once
these initializations were generated, we ran the code for each
of the 64 pairs to verify the correct answer and that they were
equivalent. Figure 1 shows an example of an initialization
and pair of snippets.

Procedure

Our experiment consists of presenting subjects with 32 ran-
domly chosen samples from our 64 pairs. Each subject is

int width = 7;
int x = 3;
// Original Source Code
if(x >= width / 3 * 2) {
// Transformed Source code
if(x >= 2 * width / 3) {

Figure 1: Example initialization and expression pair. Partic-
ipants saw only one of the pair (without the Original/Trans-
formed label) and the multiple choice question: ”Does the
expression evaluate to true or false?”

randomly shown only 1 variant of the pair, to prevent any
learning effect from seeing both versions. For each sample,
the subject is first shown the variable initializations for 3 sec-
onds, after which they can advance the page to see the expres-
sion that uses them in addition to the initializations.

Then, they are asked to mentally compute the value of
the expression after execution. Tasks included computing a
numerical value, determining whether a boolean expression
was true or false, or determining how many times a for loop
would execute. For numerical questions, respondents entered
the value in a text box, and for boolean values they choose be-
tween true/false buttons. For text questions the cursor began
in the text box, and true/false questions could be answered
with the ’t’ and ’f’ keys, enabling subjects to complete the
experiment entirely using their keyboard.

During the experiment, we measured both answer cor-
rectness and response time. Correctness is straightforward,
though we give credit for similar answers (i.e. ”8” counts for
a question with a floating point answer of ”8.0”). For tim-
ing, we used the high precision timing Javascript library Per-
formance1 to record the timing of every keystroke and click
involving the text box or answer buttons. Using these times
we constructed two response variables of interest: First Ac-
tion Time and Last Action Time. Respectively, these are the
first and last times the subject interacts to answer the ques-
tion (whether by click or keystroke), excluding the final click-
/keystroke to submit their answer.

We presented the survey to workers on Amazon’s Mechani-
cal Turk2. To quality for the main experiment, subjects had to
pass a 3 question Java code comprehension task. Answering
all 3 questions correctly allowed them to choose to continue
to the main task and the instructions for it. After the subjects
completed the main task, there was an optional demographics
survey and a couple open ended feedback questions. At the
end, they were presented their overall score on the main task,
and we exclude from data analysis any response that received
a score of less than 20 out of 32.

Participants
We restricted our participants to workers on Mechanical Turk
who had 1000 or more hits, a 99% or greater acceptance

1https://developer.mozilla.org/en-US/docs/Web/API/
Performance

2https://www.mturk.com/

rate, and were from the US or Canada. We also used Unique
Turker3 to avoid duplicate attempts. In total, we had 343 at-
tempts on the qualification task, and 116 full completions of
the main task with 111 scoring 20 or higher.

The subjects reported an age with mean 32.2 and s.d. 8.8
years, Java experience with mean 10.5 and s.d. 5.3 years, and
took 34.2 minutes on average with s.d. 14.3. About 67% pro-
grammed at least a few times a week and most of the rest
at least at few times a month. Almost all participants had
at least at some college education, with over 50% having a
Baccalaureate degree. Most use Mechanical Turk as an extra
source of income. We paid $1 to everyone who took the qual-
ification (pass or fail), and an additional $4 to everyone who
completed the main task, regardless of score.

Results
Statistical Analysis
We have 3 primary response variables of interest, 1) a binary
variable for whether the respondent answered the question
correctly, 2) their First Action Time in seconds, and 3) their
Last Action Time in seconds. Our primary explanatory vari-
able for surprisal is a binary value which is 0 if this variant
was the less surprising version or 1 if it is the more surpris-
ing version. We analyze our data using mixed-effects regres-
sion models. Our full models contain fixed effects for which
of the 4 transformation types a question was, and whether
the question was a text box or true/false question. We also
considered interaction effects of each of these with the sur-
prisal value. Our random effects are the maximal structure
justified by the design(Barr, Levy, Scheepers, & Tily, 2013);
for items, we have a random intercept and a slope for sur-
prisal; for subjects, a random intercept and slopes for sur-
prisal, transformation type, question type, and their interac-
tions. We use deviation coding for all categorical variables;
each coefficient is in comparison to the grand mean. There-
fore, for example, the regression formula for our full model
using the binary measure for Last Action Time is as follows:
Last Action Time ∼ Surprisal*(TransType + QuestionType)
+ (1 + Surprisal*(TransType + QuestionType)|ResponseID)
+ (1 + Surprisal|Question). The correctness models were lo-
gistic regressions, and the timing models were lognormal, as
we observed that fit the distribution of the response well. We
fit these models using the brms package for bayesian regres-
sion, using default priors (Bürkner, 2017). We also tested
each of these full models against simpler ones to check ro-
bustness, using WAIC scores to compare them (Watanabe,
2010). When the simpler models have qualitatively similar
results to the full models, but much better WAIC scores, we
present the simpler models.

As these experimental methods have not typically been ap-
plied to code, we additionally want to explore best practices
for these types of experiments, so we also considered our data
in a few other ways. We considered our models with and
without timing outliers (cases where subjects answered more

3https://uniqueturker.myleott.com/

than 3 standard deviations away from the mean of first and
last action time), but observed that they had minimal impact,
so we present the models with outliers. We also modeled
the text answer and true/false questions separately, after ob-
serving different behavior from these questions in our models
and plots. Supplementary materials and R notebooks showing
models and plots not included in results can be found in the
anonymous archive: https://doi.org/10.5281/zenodo.3626129

Timing and Surprisal

Table 2: Fixed effects for bayesian mixed effects lognormal
regression comparing if a variant was more or less surpris-
ing against the Last Action Time. WAIC scores suggested the
model without interactions was best.

Estimate Error 1-95% CI u-95% CI
Intercept 3.08 0.06 2.96 3.20
Surprisal 0.07 0.02 0.02 0.12
AddParen 0.09 0.09 -0.08 0.26
Arithmetic -0.20 0.09 -0.37 -0.03
Relational 0.02 0.09 -0.17 0.19
Text 0.15 0.05 0.04 0.26

First, let’s consider the question of whether more surprising
code takes longer for humans to comprehend. We will focus
primarily on Last Action Time, as the effects were larger and
more significant than First Action Time. Figure 2a shows the
median time difference for Last Action Time plotted against
the difference in surprisal. Plotting lines from very simple
regressions trend upwards as predicted; participants tended to
answer questions about the relatively more surprising version
of the code more slowly.

Now, to see if these effects are significant, we present the
results of our mixed effects models which account for the
variance of the questions and subjects. We will discuss the
Last Action model in detail in Table 2, and then briefly men-
tion the First Action model. Surprisal has a significant effect,
and as the regression is lognormal, we can interpret the av-
erage variant with lower surprisal taking 21.8 seconds and
with higher surprisal taking 23.3 seconds. Looking at the
other coefficients, we see significant differences on arithmetic
questions and on text questions, with arithmetic being signif-
icantly faster and text questions significantly slower. In com-
parison to this model, the estimated surprisal coefficient for
the First Action Time model with best WAIC score is 0.06
with 95%-CI (0.00, 0.11). The effect is suggestive, but not
large enough to conclude significance.

When we divide our data to look at the text and true/false
questions separately in models, we see that the the effect is
less significant for the true/false models, but much more so
in the text models. The text questions exhibit larger effects;
in fact, for the text questions only both first and last action
time show significant effects of surprisal: 0.12 with CI (0.01,
0.23) for the first action model and 0.14 with CI (0.07, 0.21)
for the last action model. However, when modeling the true/-

false questions only, the effects are no longer significant -
both contain 0 within their credible intervals. In Figure 3a,
we can see these trends in a summarized version of the data
with simple regression models.

Case Studies Some transformations had drastic changes
in time; using the difference in median last action time,
we present the most extreme examples for and against
our hypothesis that higher surprisal leads to longer men-
tal computation. For the most extreme example that
agreed with our theory, we saw an increase of 22.5 sec-
onds when changing time -= hours * 60 * 60; to
time -= 60 * hours * 60;. The language model pre-
ferred the original in this case. The most extreme change
in the direction opposite to what is predicted by our the-
ory also happened when the language model gave lower
surprisal on the original, but the transformation proved
much easier to comprehend. By changing the original code
for(int i = 0; i < _maxfev && step >= minStep;
++i, step *= _stepDec) by adding parentheses around
step >= minStep, subjects were able to correctly determine
how many times the loop executed a median of 26.1 seconds
faster. Small line level transformations can substantially
change how quickly humans correctly comprehend code.

Accuracy and Surprisal

For our mixed effects model of correctness, the best model
judging by WAIC scores was a model with no interactions
that excluded the transformation type as a categorical vari-
able. The binary surprisal coefficient was -0.21, suggesting
a negative trend between surprisal and correctness. However,
the 95% credible interval on this coefficient was (-0.56, 0.15).
As this interval is wide and includes 0, we cannot conclu-
sively say that the effect is significant, though it is at least in
the expected direction. Graphically, we express this trend in
Figure 2b, comparing the accuracy against the surprisal dif-
ference, summarized for each question.

As in the timing models, there is a significant difference
between the text and true/false questions, so we divide the
data and model them separately. We see that the the effect is
even less significant for the true/false models, but more so in
the text models. The coefficient for surprisal for the text only
model is -0.37, but the 95% credible interval still contains
0 (-0.87, 0.11). Figure 3b shows a summarized plot of these
trends. Therefore, we can at best say the effects are suggestive
but not conclusive for correctness; further study is needed to
link surprisal and comprehension accuracy.

Case Studies As with timing, we present the most ex-
treme cases for and against our hypothesis that higher
surprisal means fewer correct responses for the questions.
For an example of the largest change in the expected
direction, we swapped the operands in the expression
res[numstart + i] += scale * numVals[i]; to change
it to res[numstart + i] += numVals[i] * scale;.
The transformed code had lower surprisal, and it im-

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

● ●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

Relational Swap Removing Parentheses

Adding Parentheses Arithmetic Swap

−25 0 25 50−25 0 25 50

−20

−10

0

10

20

−20

−10

0

10

20

Transformed − Original Surprisal (bits)Tr
an

sf
or

m
ed

 −
 O

rig
in

al
 L

as
t A

ct
io

n
(S

ec
on

ds
)

(a) Median Last Action Time vs Surprisal Difference

●
● ●

●

●

●

●

●●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

Relational Swap Removing Parentheses

Adding Parentheses Arithmetic Swap

−25 0 25 50−25 0 25 50

−0.6

−0.4

−0.2

0.0

0.2

−0.6

−0.4

−0.2

0.0

0.2

Transformed − Original Surprisal (bits)

Tr
an

sf
or

m
ed

 −
 O

rig
in

al
 C

or
re

ct
ne

ss

(b) Correctness vs Surprisal Difference

Figure 2: Per question pair plots of a) last action time and b) question accuracy differences against the difference in surprisal
between the transformed and original code broken down by each of the 4 transformations. For the x axis on each plot, further
left indicates when original code is more surprising, and further right means the transformed code is more surprising. For
a), the y axis plots the difference in median time between the two; smaller values (below 0) indicate that questions about the
transformed code were answered more quickly. For b) the y axis plots the difference in fraction of correct answers. Higher
values mean more people correctly answered questions about the transformed code.

proved the percent of correct answers from 55.5% to
89.2%. In this case, we theorize that grouping the
array accesses together might have made the men-
tal computation easier. The most extreme change in
the unexpected direction was the transformation from
return (2.0 / sampleSize) * (prediction - lb);
to return 2.0 / sampleSize * (prediction - lb);.
The transformation had lower surprisal, but 93.1% of our
subjects correctly computed the original code and only
57.1% did so for the transformed version. Perhaps the lack of
parentheses made the order of operations between the divide
and multiply operations unclear.

Discussion
Does higher language model surprisal predict increased dif-
ficulty in processing code? Our experiment provides sugges-
tive but not definitive evidence for this effect. The clear-
est effects appeared in the models measuring the total time
to answer the comprehension questions; for models measur-
ing the first time the subjects interacted with the questions
and whether the question was answered correctly, the effects
trended in the predicted direction but were not significant.
Exploratory analysis beyond our main models showed these
effects were more pronounced when we only considered text
box questions and excluded true/false questions.

One may question whether such small changes to single
lines of code could really affect how easy they are for humans
to understand. However, our case studies demonstrated this
is not true by counterexample; we found cases where even
a small change could drastically alter how quickly and accu-
rately participants could answer questions. A single changed
parentheses or reordered statement could lead to a misunder-

standing about some code’s meaning.
Our experiment shows comprehension tasks are a viable

method of studying how people process code, and provides
some recommendations for future studies of this type. First,
focus on comprehension questions that require text entry an-
swers. True/false questions can be more easily guessed, and
might be too simple to see the desired effects. Likewise, more
difficult questions may be able to create more significant ef-
fects. Finally, we hope that as these effects are better under-
stood, it may be possible to use surprisal as a method to guide
automated tools to modify code to be more easily understand-
able by humans without altering its computational meaning.

Acknowledgments
Acknowledgments will be added after the anonymous review
period ends.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., . . . others (2016). TensorFlow: A System for Large-
Scale Machine Learning. In OSDI (Vol. 16, pp. 265–283).

Allamanis, M., Barr, E. T., Devanbu, P., & Sutton, C. (2018).
A survey of machine learning for big code and naturalness.
ACM Computing Surveys.

Banker, R. D., Datar, S. M., Kemerer, C. F., & Zweig, D.
(1993). Software complexity and maintenance costs. Com-
munications of the ACM, 36(11), 81–95.

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013).
Random effects structure for confirmatory hypothesis test-
ing: Keep it maximal. Journal of Memory and Language,
68(3), 255 - 278.

Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson,
J. H., Schulte, C., . . . Tamm, S. (2015). Eye movements in

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

Text Box Question True False Question

−25 0 25 50−25 0 25 50

−20

−10

0

10

20

Transformed − Original Surprisal (bits)Tr
an

sf
or

m
ed

 −
 O

rig
in

al
 L

as
t A

ct
io

n
(S

ec
on

ds
)

(a) Median Last Action Time vs Surprisal Difference

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

Text Box Question True False Question

−25 0 25 50−25 0 25 50
−0.6

−0.4

−0.2

0.0

0.2

Transformed − Original Surprisal (bits)

Tr
an

sf
or

m
ed

 −
 O

rig
in

al
 C

or
re

ct
ne

ss

(b) Correctness vs Surprisal Difference

Figure 3: Per question pair plots of a) last action time and b) question accuracy differences against the difference in surprisal
between the transformed and original code broken down by each of 2 types of questions. For the x axis on each plot, further left
indicates when original code is more surprising, and further right means the transformed code is more surprising. For a), the y
axis plots the difference in median time between the two; smaller values (below 0) indicate that questions about the transformed
code were answered more quickly. For b) the y axis plots the difference in fraction of correct answers. Higher values mean
more people correctly answered questions about the transformed code.

code reading: Relaxing the linear order. In Program Com-
prehension (ICPC), 2015 IEEE 23rd International Confer-
ence on (pp. 255–265).

Bürkner, P.-C. (2017). brms: An R Package for Bayesian
Multilevel Models Using Stan. Journal of Statistical Soft-
ware, 80(1), 1–28.

Casalnuovo, C., Barr, E. T., Dash, S. K., Devanbu, P., &
Morgan, E. (2020). A Theory of Dual Channel Con-
straints. In 2020 IEEE/ACM 42nd Internation Conference
on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER).

Casalnuovo, C., Lee, K., Wang, H., Devanbu, P., & Morgan,
E. (2019). Do People Prefer ”Natural” code?

Casalnuovo, C., Sagae, K., & Devanbu, P. (2018). Study-
ing the Difference Between Natural and Programming Lan-
guage Corpora. Empirical Software Engineering, 1–46.

Fedorenko, E., Ivanova, A., Dhamala, R., & Bers, M. U.
(2019). The Language of Programming: A Cognitive Per-
spective. Trends in cognitive sciences.

Hindle, A., Barr, E. T., Su, Z., Gabel, M., & Devanbu, P.
(2012). On the Naturalness of Software. In Proceedings of
the 34th International Conference on Software Engineering
(pp. 837–847). Piscataway, NJ, USA: IEEE Press.

Karampatsis, R.-M., & Sutton, C. (2019). Maybe Deep
Neural Networks are the Best Choice for Modeling Source
Code. arXiv preprint arXiv:1903.05734.

Knuth, D. E. (1984). Literate programming. The Computer
Journal, 27(2), 97–111.

Levy, R. (2008). Expectation-based syntactic comprehen-
sion. Cognition, 106(3), 1126 - 1177.

Scalabrino, S., Bavota, G., Vendome, C., Linares-Vásquez,
M., Poshyvanyk, D., & Oliveto, R. (2017). Automatically

assessing code understandability: How far are we? In Pro-
ceedings of the 32nd IEEE/ACM International Conference
on Automated Software Engineering (pp. 417–427).

Sennrich, R., Haddow, B., & Birch, A. (2016, August).
Neural Machine Translation of Rare Words with Subword
Units. In Proceedings of the 54th annual meeting of the
association for computational linguistics (volume 1: Long
papers) (pp. 1715–1725). Berlin, Germany: Association
for Computational Linguistics.

Siegmund, J. (2016). Program comprehension: Past, present,
and future. In 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER)
(Vol. 5, pp. 13–20).

Siegmund, J., Kästner, C., Apel, S., Parnin, C., Bethmann,
A., Leich, T., . . . Brechmann, A. (2014). Understanding
understanding source code with functional magnetic reso-
nance imaging. In Proceedings of the 36th International
Conference on Software Engineering (pp. 378–389).

Smith, N. J., & Levy, R. (2013). The effect of word
predictability on reading time is logarithmic. Cognition,
128(3), 302–319.

Tiarks, R. (2011). What maintenance programmers really do:
An observational study. In Workshop on Software Reengi-
neering (pp. 36–37).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., . . . Polosukhin, I. (2017). Attention is all
you need. In Advances in neural information processing
systems (pp. 5998–6008).

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross
validation and widely applicable information criterion in
singular learning theory. Journal of Machine Learning Re-
search, 11(Dec), 3571–3594.

