
Replication of Assert Use in GitHub Projects

Casey Casalnuovo, Prem Devanbu, Vladimir Filkov, Baishakhi Ray

Computer Science Dept., Univ. of California, Davis

{ccasal,ptdevanbu,vfilkov,abioliveira,bairay}@ucdavis.edu

I. INTRODUCTION

Replication is an important aspect of empirical science. In

medicine, for example, there is a great deal of effort spent

on replication. The evidence-based medicine movement gives

highest weight to research that has been repeated several

times, with consistent results. When multiple studies provide

consistent results, they are collected into online compendia

such as the Cochrane Collaboration 1 or the National Guidline

Clearinghouse 2. Replications are most warranted for surprising

results [6], small samples [2], or small effect sizes [8], [1].

While replications are useful for validating results, they

are unfortunately uncommon in software engineering, due

to complexities associated with the software development

environment [7].

In our paper Assert Use in GitHub Projects [4], we addressed

several questions relating who added asserts to projects, where

they were added, and their relationship with code defects.

In that paper, one of results (that Asserts are negatively

associated with bugs) had a small effect size (< 1%), and was

significant. This per se [1] provides a strong motivation for

replication. In addition, while investigating further properties

of asserts, we discovered a deficiency in the tool used to extract

names of functions from changes in git logs. Since the observed

effect sizes of the relationship between assertions and defects in

our original study were small, we are using an exact, dependent

replication [9] to determine what, if any, models change when

using a more accurate method of function name extraction.

TABLE I: A SAMPLE OF THE GIT DIFF OUTPUT.

@@ -104,2 +108,5 @@ static void pick_seeds(...

+ *seed_a = node;

+ *seed_b = node + 1;

+

for (cur1 = node; cur1 < lim1; ++cur1)

To demonstrate what was faulty with our original function

name extraction, first consider Table I. This chunk is an example

of the output from the git diff log, which makes use of the

diff utils 3 package.

The tool used the optional header, e.g. the line following

the @@, to identify the function name context of a diff chunk.

In the case of small changes to functions, like in Table I this

correctly matches the function context of the change. However,

the optional header only provides an estimate of the closest

1http://www.cochrane.org/
2http://www.guideline.gov/
3https://www.gnu.org/software/diffutils/

TABLE II: A SAMPLE OF THE DIFF OUTPUT FOR A NEWLY ADDED FILE.

NO FUNCTION NAME IS RECORDED IN THE HEADER, BUT FUNCTION(S) MAY

APPEAR IN THE FILE.

@@ -0,0 +1,135 @@

+// Copyright 2014 The Go Authors.

+//

...

+static void

+ffi_callback (ffi_cif* cif __attribute__((unused)),

+ void *results,

+ void **args, void *user_data)

+{

...

+}

...

TABLE III: A SAMPLE OF THE DIFF OUTPUT FOR A FUNCTION WITH A

LABEL IN IT. THE OPTIONAL HEADER MATCHES THE LABEL INSTEAD OF

THE FUNCTION’S NAME.

@@ -87,6 +85,5 @@ retry:

runtime_unlock(c);

- *pfirst = nil;

- return 0;

+ return nil;

}

- s = c->nonempty.next;

+ goto retry;

TABLE IV: A SAMPLE DIFF WHERE A FUNCTION IS ADDED INTO THE

CODE. THE NAME IN THE OPTIONAL HEADER MATCHES THE FUNCTION

IMMEDIATELY ABOVE IT IN THE FILE.

@@ -1080,2 +1060,22 @@...ccv_convnet_update_new(...

+static void _ccv_convnet_compute_softmax(

+ ccv_dense_matrix_t* a,

+ ccv_dense_matrix_t** b, int type)

+{

+ ...

+}

function-like context of the changes. Specifically, it returns first

match to a regular expression in the unmodified lines above

the changes 4.

We discovered this method fails to match a change’s function

context in several cases. Tables II, III, and IV provide examples

of when the function name will be missing or misattributed in

the optional header.

When a whole file is added or deleted, like in Table II, there

are no unmodified lines, and so no context is reported. These

4See sections 2.2.3.1 and 2.2.3.2 on regular expressions and c function
headings in http://www.gnu.org/software/diffutils/manual/diffutils.html

were originally reported as NA in our database and ignored as

the functions containing the asserts could not be determined

easily in such cases. In addition, in the case of a new function,

as in Table IV the regular expression will match the function

immediately above it. Finally, the regular expression used by

Diff Utils is not robust, and may also match labels inside

functions, such as in Table III. This regular expression can also

match contexts other than a function, such as a class, struct,

or namespace.

Given these deficiencies, we developed a tool to more

accurately parse the function names from C and C++ logs.

Not all of our research questions question are affected by

this change; we list of our research questions from the original

paper below:

• How does assertion use relate to defect occurrence?

• How does assertion use relate to the collaborative/human

aspects of software engineering, such as ownership and

experience?

• What aspects of the network position of a method in a

call-graph are associated with assertion placement?

• Does the domain of application of a project relate to

assertion use?

The first two RQ’s depended on the function names extracted

from the logs, and as such are the ones that we replicate here.

RQ 1 represents the greatest cause for concern, given the small

effect size. RQ 3 is not affected as the asserts and function

names as the data used to answer that question was extracted

from call graphs with a different tool. RQ 4 is not affected as it

does not use function level information in locating the asserts,

only information about which project the asserts appeared in.

Below, we summarize the results from the new data on the

affected RQ’s:

• We find that the number of functions containing asserts is

7.6%, higher than the 4.6% originally reported. We still

find that C++ functions contain asserts more frequently

than C functions, with 9.8% for C++ and only 5.9% for C,

though size of the difference is not as large as originally

reported..

• The original weak results for RQ 1 now have disappeared:

asserts are still significant, albeit with an opposite sign

from the previous result, but their effect size is tiny.

Interestingly, however, in contrast to before, now we find

asserts matter much more for methods developed by fewer

developers (vs. by more), and are associated with a slightly

higher occurrence of defects.

• We find that developers with higher ownership and

experience still are more likely to add assertions, leaving

RQ 2 unchanged. However, the effect size of ownership

on asserts is higher while the effect size of experience is

lower than in the original study.

II. METHODOLOGY AND STUDY SUBJECTS

A. Study Subjects

The projects selected for this replication are exactly the

same as those we used in the original study. Their properties

are summarized in Table V. The notable changes are in the

rows #Methods and #Assert Methods. In the original paper, we

found that 4.6% of methods contain asserts. In this replication

study, assertions appear in about 7.6% of functions overall

(130, 928/1, 717, 381). We still find that assertions appear more

frequently in C++ functions (9.8%) as compared to C functions

(5.9%). However, this difference is not as large as reported

previously (10.7% for C++ in comparison to a rate of only 2%

C). Additionally, the summary table in our original paper was

not clear when listing the numbers of changes to functions,

labeling them as commits instead. We therefore display both

the number of commits containing C and C++ files as well

as the number changes to functions in C and C++ for various

types of changes. These include the changes identified as bug

fixing, those that contain assertions, and those in which both

apply.

TABLE V: STUDY SUBJECTS. IN THE BOTTOM HALF OF THE TABLE,

’CHANGES’ REFERS TO THE NUMBER OF CHANGES TO FUNCTIONS IN THE

LOGS, AND ’COMMITS’ REPRESENTS THE NUMBER OF DISTINCT COMMITS.

THE NUMBER OF COMMITS/CHANGES FOR BUG FIXES AND ASSERTIONS

ARE CONSIDERED ONLY FOR COMMITS TO SOURCE FILES. ASSERTIONS

ARE ONLY CONSIDERED IF THEY ARE IN THE ADDED LINES OF THE LOG.

FINALLY, COMMITS ARE MARKED UNDER C OR C++ IF THEY MODIFIES

LEAST ONE SOURCE FILE OF THAT TYPE.

c c++ Overall

Project Details

#Projects 63 52 69
#Authors 12,943 3,629 15,552
#Files 83,399 53,964 137,363
#Methods 947,206 770,175 1,717,381
#Assert Methods 55,626 75,302 130,928
Period 5/91 - 7/14 9/96 - 7/14 5/91 - 7/14

#All Commits
Total 470,401 141,091 609,087
Assertion 11,146 16,513 27,444

#Bugfix Commits
Total 127,104 47,261 172,533
Assertion 2,700 4,859 7,472

#All Changes
Total 3,006,098 2,147,616 5,153,714
Assertion 76,559 111,034 187,593

#Bugfix Changes
Total 621,331 650,525 1,271,856
Assertion 15,977 25,123 41,100

For the projects summarized in Table V, we retrieved

the full history for all non-merge commits along with

their commit logs, author information, commit dates, and

associated patches. We present results for our research

questions only on commits up until July 20, 2014,

the same cutoff as in our original paper. We used the

command git log -date=short -no-merges

-U1000 -function-context - *.c *.cc

*.cpp *.c++ *.cp *.cxx *.C

*.CC *.CPP, *.C++, *.CP, *.CXX to

produce the git logs. The –function-context option displays

additional context around each change so that the function

name can be parsed from the chunk of diff output. This

command differs from our original process in that we explicitly

invoke the function-context, but also force 1000 lines of

context regardless. We used this large manual context as we

observed that the git diff –function-context option failed to

present entire functions when they were large and contained

labels. The large context allows changes to be captured in

all but the largest of functions. Finally, the list of extensions

after the git log causes the command to only display diff

output for files of these types, which are C and C++ source

file types. We do not consider changes to files of other types

of extensions, and this set is the same as used in the original

paper. As in the original paper, we exclude test files from

consideration, determined by the presence of the string ‘test’

in the file names.

We also modified the section of our tool which identifies

bug fixing commits. The original version searched the commit

message for keywords related to bug fixing and errors. We

added several more keywords to the identifier, but also filter

out some phrases that were related to error handling code and

include a few project specific improvements for bug reporting

styles. 5

To evaluate whether the commits labelled as bug fixes were

labelled correctly, we randomly selected 100 commits that were

marked as bug fixes. We manually examined their commit

messages to determine if they were in fact bug fixes. If it was

not clear from the message, linked issues and the source code

were used to resolve ambiguous cases. We found 94 of the

100 cases were labelled correctly (though 4 of these were style

and formatting fixes). 5 cases were wrong, which included

commits that changed error handling code or commits that

made use of the bug related keywords such as ’fix’ in a context

other than bug fixing. One case was ambiguous, we could not

determine if it was a bug fix or not from the message and code

comments.

To extract the names of functions that changed and to find

the lines containing modified asserts, we created a tool to parse

the pieces of diff output in C and C++ source files produced by

our log command. The tool uses regular expressions to identify

functions and alternates between two phases. In the first phase

the tool searches for a function name and an associated opening

{, and in the second phase it searches for a corresponding

closing }. Specifically, on each opening { before finding a

function name, we check if the accumulated prior lines match

any of a set of regular expressions for either C or C++ functions,

depending on the file type..6 These regular expressions are

designed to match most C and C++ functions, including const

and template functions. Note that before processing any line

for assertions or function names, we remove any comments

and strings from the line.

The contents of the functions are tracked by two stacks

that manage the current open contexts in the old and new

versions of the program, which track the number of open

brackets (and what they are associated with) in each version.

We also maintain a list of classes seen in the file and use this

to identify constructors and destructors, which exclude the type

information our match by our other regular expressions. Also,

while similar to functions, our tool does not parse Macros, and

we do not treat them as functions.

5See method if_bug ghLogDb.py on https://github.com/caseycas/gitcproc
6For details on the specific set of regexes used see the files

CPlusPlusLanguageSwitcher.py and CLanguageSwitcher.py on
https://github.com/caseycas/gitcproc

To extract assert locations, we use a very similar method

to that used in our original paper, with a few modifications.

We mark any line containing an assert if it contains a case

insensitive match to the keyword assert. Additionally, while

manually checking our projects we observed that there were a

handful of macros that when expanded were clearly asserts, but

did not contain the keyword assert. These were the functions

ut_a and ut_ad. If we saw a function call that exactly matched

any of these names, we also marked it as an assert.

We then filtered out any asserts on unmodified lines, and also

ignored any functions parsed from the chunks that contained no

modified lines. Asserts found outside functions were grouped

into one mock ’function’. These asserts were excluded from

the results for RQ1 and RQ2.

We perform additional filtering on these returned names to

return a set of strictly function changes. This was performed via

an sql command to remove classes, labels, function definitions,

and other structures. Our original paper filtered some of these,

such as blank rows marked as NAs, but the current filter

produces a more reliable set of function names.

Our tool was able to parse all but one of the logs used in the

earlier paper, the log for php-src. The tool continuously hung

on this project for reasons we could not determine. Therefore,

we used the results from a successful parse of php-src from

a earlier version of this tool. We had found similar precision

rates for that version, but the false negative rates were much

higher.

To evaluate the precision our parser of assert and function

names and subsequent filtering, we selected 100 random

instances of function changes that our tool had extracted and

marked as having asserts added or deleted. To classify an

instance as correct, it must satisfy all the following criteria.

One, the function name must be correctly parsed from the log.

Two, the number of assertions added and deleted must exactly

match what is seen in the log file. Three, the number of lines

added and deleted in the function must exactly match what

is seen in the log file. In our random sample 95 examples

were correct. Two of the incorrect examples resulted from

complex changes to brackets that grouped a couple functions

under one name. Two others correctly identified the function,

but miscounted the assertions, as they did not capture the

DCHECK function in the v8 project, which acts as an assertion

even though it doesn’t share the name. The last case was a

change to an function implementing assertion logic, but was

did not contain a call to an assert itself.

We also evaluated 100 random samples of sections of code

marked as non-functions to estimate how many functions we

were not parsing. Since there may be many non functional

changes in a chunk of code (@@ segment), all of which our

tool will group together, we limited our sample to non function

changes with less than 50 additions and 50 deletions so that

they could be manually examined. We mark an example as

false if there are changes in a function that were grouped

into the count of the non function changes. Here, we had 80

correct examples, and 20 mistakes. 10 of these come from

php-src, which was parsed with the older version of the tool.

Most of the mistakes (11, exactly), resulted from insufficient

context in the git logs from very large functions with many

labels. These missed functions were the result of logs similar

to Table III, which had no function for our parser to extract.

The others were the result of unusual function names 7 that fell

outside of what our regular expressions captured. Given the total

numbers of changes we marked as functions and non-functions

(5,746,094 and 1,408,065 respectively if changes after July

2014 are included.), and using our sample false positive and

false negative rates as estimates of the true false positive and

negative rates, we estimate the tool has a approximately 95%

precision and 95% recall. Finally, there are a few cases where

our tool is unable to parse C or C++ diff chunks. However, we

observed only a total of only 10 cases, which is insignificant

relative to the total number of changes.

Beyond these changes, the code and methodology used for

to produce results for RQ 1 and RQ 2 remains unchanged.

The tool used to parse the log files is available

at https://github.com/caseycas/gitcproc/. This tool is un-

dergoing active development, so to see the version

used for this paper, check out before the commit

6d80dd476fcc72c457de1d83926e8e0357d2f848 on the tool-

eval branch. We have also made the other data and

scripts used in this replication and the original paper at

https://github.com/caseycas/assert_replication. This repository

contains instructions that will allow you to replicate the results

of this paper.

III. RESULTS

A. RQ1. How does assertion use relate to defect occurrence?

We fit here the same hurdle model [3] as in our original

paper, and investigate how our improved function extraction

affects the relationship between assertions and defects. As a

reminder, the hurdle model is useful in modeling count data,

particularly when the response variable has a large number of

zero values. A single regression model makes the assumption

that both the zero-defect/zero-assert and non-zero defect/assert

data follow the same distribution. To avoid this assumption,

the hurdle model allows us to model the effect of going from

a defect count of 0 to 1 separately from further increases in

the defect count. For additional details, refer to our original

paper [4].

Table VI shows these hurdle and count models with our new

data. Code size and number of developers remain positively

correlated with defects, with large effect sizes. However, the

effect of asserts has further diminished, reversed direction, and

is positively correlated with defects. The effect of asserts is

very small because its coefficients are small in both models

(e.g. the odds for asserts in the logistic regression is 1.03),

but also because the portion of NULL deviance explained by

7For example, the version in this paper did not handle struct con-
structors, constructors and destructors without a class definition in
the same chunk, overridden virtual functions, and K&R functions:
http://stackoverflow.com/questions/3092006/function-declaration-kr-vs-ansi

this variable is much less than 1%.8 We conclude from these

models that there is no evidence that non test asserts have an

effect on defects in general.

However, our original paper also explored the effect of

assertions in functions that had many developers versus those

that had only a few developers. The theory was that the

invariants displayed in assertions could act as a communication

between developers, helping them to avoid bugs. Table VII

displays the relationship between defects and asserts for in

functions with greater and fewer numbers of developers. In the

model with greater numbers of developers. the relationships

between asserts and defects has reversed and is significant, but

again, the effect size is incredibly small. In the model with

fewer developers, which was statistically insignificant in our

original paper, the effect of asserts is significant and positively

correlated with bugs. Moreover, the asserts explain 2.25% of

the NULL deviance, showing a small positive effect between

assertions and bugs in methods having few developers.

TABLE VI: BUG ANALYSIS MODEL. LINES ADDED AND ASSERTS ADDED

MEASURE THE NUMBER OF ’+’ IN THE LOG DIFF FILE. THE COUNT MODEL

IS FOR THE DATASET: (TOTAL ASSERTS > 0 & TOTAL_BUG > 0)

Dependent variable:

total_bug >0 total_bug

logistic glm: quasipoisson
link = log

(Hurdle Model) (Count Model)

log(lines added) 0.178∗∗∗ (0.002) 0.183∗∗∗ (0.003)
dev 1.144∗∗∗ (0.003) 0.214∗∗∗ (0.002)
asserts added 0.032∗∗∗ (0.002) 0.048∗∗∗ (0.003)
Constant −1.042∗∗∗ (0.005) −0.004 (0.012)

Observations 1,689,229 52,193
Log Likelihood −945,740.500
Akaike Inf. Crit. 1,891,489.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Df Deviance Resid. Df Resid. Dev

NULL 1689228 2206785.97
log(lines added) 1 94459.98 1689227 2112326.00
dev 1 220524.09 1689226 1891801.91
asserts added 1 320.83 1689225 1891481.07

Df Deviance Resid. Df Resid. Dev
NULL 52192 70574.98
log(lines added) 1 14747.39 52191 55827.59
dev 1 10658.85 52190 45168.74
asserts added 1 299.59 52189 44869.15

B. RQ2. How does assertion use relate to the collaborative/hu-

man aspects of software engineering, such as ownership and

experience?

Here we investigate the changes to the observed character-

istics of those who add asserts to functions and those who

don’t. Again, we focus on the developer’s ownership of and

experience in the function, as defined and calculated in exactly

the same manner as our original paper [4].

Figure 1 shows the relationship between a developer’s

ownership of a function and whether or not they added any

8The portion of the NULL variance that is explained by an independent
variable, as calculated, e.g., by an ANOVA, can be used as the independent
variable’s effect size [5]. As we use non-linear models, the deviance plays the
role of the variance.

TABLE VII: MODEL EXPLAINING BEHAVIOR OF ASSERTS AND TOTAL BUGS

IN METHODS TOUCHED BY GREATER & FEWER NUMBERS OF DEVELOPERS.
ASSERTS AND LINES ADDED AGAIN MEASURE THE NUMBER OF ASSERTS

AND LINES THAT ARE MARKED AS ’+’ IN THE DIFF OUTPUT.

Dependent variable:

total_bug

(Greater) (Fewer)

log(lines add) 0.187∗∗∗ (0.005) 0.150∗∗∗ (0.004)
dev 0.167∗∗∗ (0.003) −0.103∗∗∗ (0.018)
asserts added 0.018∗∗∗ (0.004) 0.098∗∗∗ (0.004)
Constant 0.168∗∗∗ (0.022) −0.154∗∗∗ (0.017)

Observations 18,628 33,565

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Df Deviance Resid. Df Resid. Dev

NULL 18627 35532.30
log(lines added) 1 6695.44 18626 28836.86
dev 1 3831.85 18625 25005.01
asserts added 1 27.30 18624 24977.71

Df Deviance Resid. Df Resid. Dev
NULL 33564 20416.64
log(lines added) 1 2402.05 33563 18014.59
dev 1 30.40 33562 17984.19
asserts added 1 459.93 33561 17524.26

asserts. As we found before, developers with higher ownership

are still more likely to commit asserts to that function. We

confirm the finding suggested by the boxplot using a one-sided

Mann Whitney Wilcoxon test with an alternative hypothesis that

the ownership of developers committing asserts is higher. This

test returns a p-value of less than 2.2 ∗ 1016, and a Cohen’s D

effect size suggests the effect is small to medium (0.349). This

effect size is larger than the small effect size (.217) observed

in the original paper.

Regarding experience, Figure 2 displays the relationship

between a developer’s experience in a function and whether

or not they added asserts. This is calculated only for functions

where asserts were added and where both developers who added

asserts and developers that did not add asserts contributed code.

As with ownership, our new results confirm our findings from

the original paper; developers with more experience are more

likely to add assertions than those with less experience. Using

a paired one-sided Mann Whitney Wilcoxon test, this time

with an alternative hypothesis that the experience of developers

who add asserts is higher, we reject the null with a p-value

less than 2.2 ∗ 1016. The effect size is slightly smaller than

for ownership, but is still between small and medium (0.354).

This effect size is smaller than the medium effect size (0.512)

obtained in the original paper.

IV. CONCLUSIONS

Empirical studies on large data sets of software projects

provide the opportunity to discover small and nuanced effects

which are not easy to identify in more controlled experiments.

However, small effects must be interpreted carefully, partic-

ularly when using tools provide only approximations of the

effects being measured. In the case of our study of asserts,

we see that with the improvements to the identification of

changes in functions and bug fixing commits, the very small

mitigating effect of asserts on bugs reversed direction, and

while still statistically significant, has an effect size too small

Added Asserts Didn't Add Asserts

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Ownership of Developers

O
w

n
e
rs

h
ip

Fig. 1: Developer ownership in functionss to which they added asserts is
greater. Outliers removed.

Added Asserts Didn't Add Asserts

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

Experience of Developers

M
e
d
ia

n
 E

x
p
e
ri

e
n
c
e

Fig. 2: Considering comitters to each function, the median experience of
those who added asserts is greater than those who did other work. Outliers
removed.

to be meaningful. However, results where we saw larger effects,

such as ownership and experience, remain roughly same.

We hope this replication will help emphasize the importance

of considering both statistical significance and effect size when

reporting results. In large data sets, when the effect size is

small, even if it is significant, the results should be interpreted

with caution.

REFERENCES

[1] A. Arcuri and L. Briand. A practical guide for using statistical tests
to assess randomized algorithms in software engineering. In Software
Engineering (ICSE), 2011 33rd International Conference on, pages 1–10.
IEEE, 2011.

[2] K. S. Button, J. P. Ioannidis, C. Mokrysz, B. A. Nosek, J. Flint, E. S.
Robinson, and M. R. Munafò. Power failure: why small sample size
undermines the reliability of neuroscience. Nature Reviews Neuroscience,
14(5):365–376, 2013.

[3] A. C. Cameron and P. K. Trivedi. Regression analysis of count data.
Number 53. Cambridge university press, 2013.

[4] C. Casalnuovo, A. Oliveira, V. Filkov, P. Devanbu, and B. Ray. Assert use
in github projects. In Proceedings of the 37rd International Conference
on Software Engineering, ICSE ’15. ACM, 2015.

[5] J. Cohen. Statistical power analysis for the behavioral sciences (2nd
edition). Lawrence Erlbaum Associates., 1988.

[6] J. P. Ioannidis. Why most published research findings are false. PLoS
Med, 2(8):e124, 2005.

[7] N. Juristo and S. Vegas. Using differences among replications of software
engineering experiments to gain knowledge. In Proceedings of the 2009
3rd International Symposium on Empirical Software Engineering and
Measurement, pages 356–366. IEEE Computer Society, 2009.

[8] V. B. Kampenes, T. Dybå, J. E. Hannay, and D. I. Sjøberg. A systematic
review of effect size in software engineering experiments. Information
and Software Technology, 49(11):1073–1086, 2007.

[9] F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo. The role of replications
in empirical software engineering. Empirical Software Engineering,

13(2):211–218, 2008.

